Telecommunication Systems

, Volume 53, Issue 4, pp 439–451 | Cite as

Tomlinson-Harashima Precoded MIMO in wireless networks: to THP or not to THP?

  • Battal Özdemir
  • Özgür GürbüzEmail author


We investigate a wireless network architecture that utilizes Tomlinson Harashima Precoded Multiple Input Multiple Output (THP MIMO) technique for improved system capacity. We consider THP MIMO in a multi user scenario, together with a proposed smart scheduling technique and we explore the capacity performance through extensive capacity analysis considering varying SNR levels, varying number of users and number of transmit/receive antennas, under fading and shadowing, also considering errors in channel state information (CSI). We also evaluate the complexity of THP MIMO and present a low-complexity scheduling algorithm that employs Gram-Schmidt algorithm for incremental implementation of THP’s QR factorization. In the end, we identify the network and channel conditions under which THP MIMO can be preferred over classical conventional MIMO, and we conclude that for practical transceivers with up to four antennas, THP MIMO can provide significant capacity enhancement over conventional MIMO at lower complexity, performing slightly below the sum rate capacity bound. Another important advantage that is observed in this study is better immunity of THP MIMO to CSI errors, as compared to conventional MIMO.


Tomlinson Harashima Precoding (THP) MIMO precoding Space-time coding Multi user MIMO 


  1. 1.
    Gesbert, D., Shafi, M., Shiu, D., & Smith, P. (2003). From theory to practice: an overview of space-time coded MIMO wireless systems. IEEE Journal on Selected Areas in Communications, 5, 681–683. Special issue on MIMO systems. Google Scholar
  2. 2.
    Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335. CrossRefGoogle Scholar
  3. 3.
    Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595. CrossRefGoogle Scholar
  4. 4.
    Costa, M. H. M. (1983). Writing on dirty paper. IEEE Transactions on Information Theory, 29(3), 439–441. CrossRefGoogle Scholar
  5. 5.
    Caire, G., & Shamai, S. (2003). On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory, 49(7), 1691–1706. CrossRefGoogle Scholar
  6. 6.
    Jindal, N., & Goldsmith, A. (2005). Dirty-paper coding versus TDMA for MIMO broadcast channels. IEEE Transactions on Information Theory, 51(5), 1783–1794. CrossRefGoogle Scholar
  7. 7.
    Li, P., Paul, D., Narasimhan, R., & Cioffi, J. (2006). On the distribution of SINR for the MMSE MIMO receiver and performance analysis. IEEE Transactions on Information Theory, 52(1), 271–286. CrossRefGoogle Scholar
  8. 8.
    Vojcic, B. R., & Jang, W. M. (1998). Transmitter precoding in synchronous multiuser communications. IEEE Transactions on Communications, 46(10), 1346–1355. CrossRefGoogle Scholar
  9. 9.
    Holakouei, R., Silva, A., & Gameiro, A. (2011). Multiuser precoding techniques for a distributed broadband wireless system. In Telecommunication systems. doi: 10.1007/s11235-011-9496-2. Google Scholar
  10. 10.
    Sacchi, C., & Panizza, M. (2011). Multi-rate group-orthogonal OFDMA-CDMA for broadband mobile transmission. In Telecommunication systems. doi: 10.1007/s11235-011-9441-4. Google Scholar
  11. 11.
    Shokair, M., & Sakran, H. (2011). Performance of SDM/COFDM system in the presence of nonlinear power amplifier. Telecommunication Systems. doi: 10.1007/s11235-010-9393-0. Google Scholar
  12. 12.
    Fischer, R. F. H., Windpassinger, C. A., Lampe, A., & Huber, J. (2002). MIMO precoding for decentralized receivers. In Proceedings of IEEE international symposium on information theory (p. 496). CrossRefGoogle Scholar
  13. 13.
    Fischer, R. F. H., & Windpassinger, C. A. (2003). Improved MIMO precoding for decentralized receivers resembling concepts from lattice reduction. In Proceedings of IEEE global telecommunications conference (Vol. 4, pp. 1852–1856). Google Scholar
  14. 14.
    Tomlinson, M. (1971). New automatic equalizer employing modulo arithmetic. Electronics Letters, 7(5/6), 138–139. CrossRefGoogle Scholar
  15. 15.
    Harashima, H., & Miyakawa, H. (1972). Matched transmission technique for channels with intersymbol interference. IEEE Transactions on Communications, 20(4), 774–780. CrossRefGoogle Scholar
  16. 16.
    Fischer, R. F. H., Windpassinger, C. A., Lampe, A., & Huber, J. B. (2002). Space-time transmission using Tomlinson-Harashima precoding. In Proceedings of ITG conference on source and channel coding (pp. 139–147). Google Scholar
  17. 17.
    Windpassinger, C., Fischer, R. F. H., Vencel, T., & Huber, J. B. (2004). Precoding in multiantenna and multiuser communications. IEEE Transactions on Wireless Communications, 3(4), 1305–1316. CrossRefGoogle Scholar
  18. 18.
    Zhou, Q., Dai, H., & Zhang, H. (2006). Joint Tomlinson-Harashima precoding and scheduling for multiuser MIMO with imperfect feedback. In Proceedings of wireless communications and networking conference (Vol. 3, pp. 1233–1238). Google Scholar
  19. 19.
    Knopp, R., & Humblet, P. A. (1995). Information capacity and power control in single-cell multi-user communications. In Proceedings of IEEE international conference on communications (pp. 331–335). CrossRefGoogle Scholar
  20. 20.
    Chen, C. J., & Wang, L. H. (2004). A unified capacity analysis for wireless systems with joint antenna and multiuser diversity in Nakagami fading channels. In Proceedings of IEEE international conference on communications (Vol. 27, pp. 3523–3527). Google Scholar
  21. 21.
    Heath, R. W. Jr., Airy, M., & Paulraj, A. J. (2001). Multiuser diversity for MIMO wireless systems with linear receivers. In Proceedings of Asilomar conference on signals, systems, and computers (pp. 1194–1199). Google Scholar
  22. 22.
    Ozdemir, B., & Gurbuz, O. (2005). A feasible high capacity wireless network architecture with MIMO precoding. In Proceedings of international conference on wireless network, communications and mobile computing (Vol. 1, pp. 733–738). Google Scholar
  23. 23.
    Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. In Proceedings of ISSSE (pp. 295–300). Google Scholar
  24. 24.
    Belfiore, C. A., & Park, J. H. (1979). Decision feedback equalization. Proceedings of the IEEE, 67(8), 1143–1156. CrossRefGoogle Scholar
  25. 25.
    Farrokhi, F. R., Foschini, G. J., Lozano, A., & Valenzuela, R. A. (2001). Link-optimal space-time processing with multiple transmit and receive antennas. IEEE Communications Letters, 5(3), 85–87. CrossRefGoogle Scholar
  26. 26.
    Yu, W., Varodayan, D. P., & Cioffi, J. M. (2005). Trellis and convolution precoding for transmitter-based interference presubtraction. IEEE Transactions on Communications, 53(7), 1220–1230. CrossRefGoogle Scholar
  27. 27.
    Fischer, R. F. H. (2002). Precoding and signal shaping for digital transmission. New York: Wiley. CrossRefGoogle Scholar
  28. 28.
    Wesel, R. D., & Cioffi, J. M. (1998). Achievable rates for Tomlinson-Harashima precoding. IEEE Transactions on Information Theory, 44, 824–830. CrossRefGoogle Scholar
  29. 29.
    Hochwald, B. M., Marzetta, T. L., & Tarokh, V. (2004). Multiple-antenna channel hardening and its implication for rate feedback and scheduling. IEEE Transactions on Information Theory, 50(9), 1893–1909. CrossRefGoogle Scholar
  30. 30.
    Lapidoth, A., & Shamai, S. (2002). Fading channels: how perfect need “perfect side information” be? IEEE Transactions on Information Theory, 48(5), 1118–1134. CrossRefGoogle Scholar
  31. 31.
    Yoo, T., & Goldsmith, A. (2006). Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Transactions on Information Theory, 52(5), 2203–2214. CrossRefGoogle Scholar
  32. 32.
    Golub, G. H., & Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore: The John Hopkins University Press. Google Scholar
  33. 33.
    Ozdemir, B., & Gurbuz, O. (2006). Scheduling approach for MIMO with Tomlinson-Harashima precoding. In Proceedings of vehicular technology conference (Vol. 1, pp. 329–333). Google Scholar
  34. 34.
    IEEE Draft Standard 802.11n (2009). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Amendment 5: enhancements for higher throughput,

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations