Telecommunication Systems

, Volume 53, Issue 3, pp 343–356 | Cite as

A cross-layer architecture to improve mobile host rate performance and to solve unfairness problem in WLANs

  • Lei Zhang
  • Patrick Sénac
  • Emmanuel LochinEmail author
  • Michel Diaz


The evolution of the Internet has been mainly promoted in recent years by the emergence and proliferation of wireless access networks towards a global ambient and pervasive network accessed from mobile devices. These new access networks have introduced new MAC layers independently of the legacy “wire-oriented” protocols that are still at the heart of the protocol stacks of the end systems. This principle of isolation and independence between layers advocated by the OSI model has its drawbacks of maladjustment between new access methods and higher-level protocols built on the assumption of a wired Internet. In this paper, we introduce and deliver solutions for several pathological communication behaviors resulting from the maladjustment between WLAN MAC and higher layer standard protocols such as TCP/IP and UDP/IP. Specially, based on an efficient analytical model for WLANs bandwidth estimation, we address in this paper the two following issues: (1) Performance degradation due to the lack of flow control between the MAC and upper layer resulting in potential MAC buffer overflow; (2) Unfair bandwidth share issues between various type of flows. We show how these syndromes can be efficiently solved from neutral “cross layer” interactions which entail no changes in the considered protocols and standards.


Wireless networks Cross layer IEEE 802.11 Transport protocols Performance over WLAN 


  1. 1.
    Sharony, J. (2006). Introduction to Wireless MIMO. Talk of the Communications Society of the IEEE Long Island Section, Nov 2006. Google Scholar
  2. 2.
    Wilson, J. M. (2004). The Next Generation of Wireless LAN Emerges with IEEE 802.11n. Intel Corporation, White Paper. Google Scholar
  3. 3.
    Zhang, L., Senac, P., Lochin, E., & Diaz, M. (2005). Cross-layer based congestion control for WLANs. In ICST QShine, Hong Kong, Jul 2005. Google Scholar
  4. 4.
    Handley, M., Floyd, S., Padhye, J., & Widmer, J. (2003). TCP Friendly Rate Control (TFRC): Protocol Specification. Request for comments 3448, Jan 2003. Google Scholar
  5. 5.
    OPNET Modeler.
  6. 6.
  7. 7.
    Benko, P., & Veres, A. (2002). A passive method for estimating end-to-end TCP packet loss. In IEEE Globecom. Google Scholar
  8. 8.
    Pilosof, S., Ramjee, R., Raz, D., Shavitt, Y., & Sinha, P. (2003). Understanding TCP fairness over wireless LAN. In IEEE Infocom, Mar 2003. Google Scholar
  9. 9.
    Koksal, C. E., Kassab, H., & Balakrishnan, H. (2000). An analysis of short-term fairness in wireless media access protocols (poster), Measurement and Modeling of Computer System. Google Scholar
  10. 10.
    Lopez-Aguilera, E., Heusse, M., Grunenberger, Y., Rousseau, F., Duda, A., & Casademont, J. (2005). An asymmetric access point for solving the unfairness problem in WLANs. IEEE Transactions on Mobile Computing, 7(10), 1213–1227. CrossRefGoogle Scholar
  11. 11.
    Filali, F. (2007). Wimeter: a bandwidth estimation tool and its assistance to QoS Provisioning in Multiple Hot Spots WLANs. NEWCOM Technical Dissemination Day, Paris, Feb 2007. Google Scholar
  12. 12.
    Davis, M. (2004). A wireless traffic probe for radio resource management and QoS provisioning in IEEE 802.11 WLANs. In ACM international symposium on modeling, analysis and simulation of wireless and mobile systems, Oct 2004. Google Scholar
  13. 13.
    Johnsson, A., Melander, B., & Bjorkman, M. (2005). Bandwidth measurement in wireless networks, Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Jun 2005. Google Scholar
  14. 14.
    Lakshminarayanan, K., Padmanabhan, V. N., & Padhye, J. (2004). Bandwidth estimation in broadband access networks. In ACM SIGCOMM conference on Internet measurement, Oct 2004. Google Scholar
  15. 15.
    Rangwala, S., Gummadi, R., Govindan, R., & Psounis, K. (2006). Interference-aware fair rate control in wireless sensor networks. In ACM SIGCOMM symposium on network architectures. Google Scholar
  16. 16.
    Li, Y., Qiu, L., Zhang, Y., Mahajan, R., Zhong, Z., Deshpande, G., & Rozner, E. (2007). Effects of interference on wireless mesh networks: pathologies and a preliminary solution. In ACM SIGCOMM workshop on hot topics in networks (HotNets-VI), Atlanta, GA, USA, Nov 2007. Google Scholar
  17. 17.
    Li, Y., Qiu, L., Zhang, Y., Mahajan, R., & Rozner, E. (2005). Predictable performance optimization for wireless networks. In ACM SIGCOMM, Aug 2005. Google Scholar
  18. 18.
    Alonso-Zárate, J., Kartsakli, E., Cateura, A., Verikoukis, C., & Alonso, L. (2005). A near-optimum cross-layered distributed queuing protocol for wireless LAN. IEEE Communications Magazine, 15(1), 48–55. Special Issue on MAC protocols for WLAN. Google Scholar
  19. 19.
    Saravanan, K., & Ravichandran, T. (2009). A cross-layer based high throughput MAC protocol for IEEE 802.11 multihop adhoc networks. European Journal of Scientific Research, 33(4), 575–584. Google Scholar
  20. 20.
    Hsieh, H.-Y., & Sivakumar, R. (2001). Improving fairness and throughput in multi-hop wireless networks. In ICN, Colmar, France, Jul 2001. Google Scholar
  21. 21.
    Sarr, C., Chaudet, C., Chelius, G., & Lassous, I.G. (2005). A node-based available bandwidth evaluation in IEEE 802.11 ad hoc networks. In International conference on parallel and distributed systems, Jul 2005. Google Scholar
  22. 22.
    Blefari-Melazzi, N., Detti, A., Ordine, A., & Salsano, S. (2005). Controlling TCP fairness in WLAN access networks using a rate limiter approach. In IEEE ISWCS, Siena, Italy, Sep 2005. Google Scholar
  23. 23.
    Tian, X., Chen, X., Ideguchi, T., & Fang, Y. (2005). Improving throughput and fairness in WLANs through dynamically optimizing backoff. IEICE Transactions on Communications, E88-B(11), 4328–4338. Google Scholar
  24. 24.
    Seyedzadegan, M., Othman, M., Subramaniam, S., & Zukarnain, Z. (2007). The TCP fairness in WLAN: a review. In IEEE international conference on telecommunication (ICT), Penang, Malaysia. Google Scholar
  25. 25.
    Ha, J., & Choi, C.-H. (2006). TCP fairness for uplink and downlink flows in WLANs. In IEEE Globecom, San Francisco. Google Scholar
  26. 26.
    Leith, D. J., & Clifford, P. (2005). TCP fairness in IEEE 802.11e WLANS. In IEEE WirelessCom 2005, Hawaii. Google Scholar
  27. 27.
    Bottigliengo, M., Casetti, C., Chiasserini, C.-F., & Meo, M. (2003). Smart traffic scheduling in IEEE 802.11 WLANs with access point. In IEEE VTC 2003 fall, Oct 2003. Google Scholar
  28. 28.
    Kim, S., Kim, B., & Fang, Y. (2005). Downlink and uplink resource allocation in IEEE 802.11 wireless LANs. IEEE Transactions on Vehicular Technology, 54(1), 320–327. CrossRefGoogle Scholar
  29. 29.
    Wu, Y., Niu, Z., & Zheng, J. (2005). Study of the TCP upstream/downstream unfairness issue with per-flow queueing over infrastructure-mode WLANs. Wireless Communications and Mobile Computing, 5(4), 459–471. CrossRefGoogle Scholar
  30. 30.
    Wang, Y., & Bensaou, B. (2001). Achieving fairness in IEEE 802.11 DFW MAC with variable packet lengths. In IEEE Globecom. Google Scholar
  31. 31.
    Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In IEEE Infocom. Google Scholar
  32. 32.
    Xia, Q., & Hamdi, M. (2005). Cross layer design for IEEE 802.11 WLANs: joint rate control and packet scheduling. In IEEE conference on local computer networks (LCN). Google Scholar
  33. 33.
    Park, E. C., Kim, D. Y., Kim, H., & Choi, C. (2005). A cross-layer approach for the per-station fairness in TCP over WLANs. IEEE Transaction on Mobile Computing, 7. Google Scholar
  34. 34.
    Choi, J., Park, K., & Kim, C. (2007). Cross-layer analysis of rate adaptation, DCF and TCP in multi-rate WLANs. In IEEE Infocom. Google Scholar
  35. 35.
    Lohier, S., Doudane, Y., & Pujolle, G. (2007). Cross-layer loss differentiation algorithms to improve TCP performance in WLANs. Springer Telecommunication Systems, 36(1), 61–72. CrossRefGoogle Scholar
  36. 36.
    Deng, D.-J., Cheng, R.-S., Chang, H.-J., Lin, H.-T., & Chang, R.-S. (2009). A cross-layer congestion and contention window control scheme for TCP performance improvement in wireless LANs. Springer Telecommunication Systems, 42(1), 17–27. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lei Zhang
    • 1
  • Patrick Sénac
    • 2
    • 3
  • Emmanuel Lochin
    • 2
    • 3
    Email author
  • Michel Diaz
    • 2
    • 3
  1. 1.INRIA Lille—Nord EuropeUniv Lille Nord de France, USTL, CNRS UMR 8022, LIFLLilleFrance
  2. 2.LAASCNRSToulouseFrance
  3. 3.UPS, INSA, INP, ISAE, LAASUniversité de ToulouseToulouseFrance

Personalised recommendations