Advertisement

Telecommunication Systems

, Volume 53, Issue 1, pp 33–45 | Cite as

Statistical analysis technique on Ad Hoc network topology dynamic characteristics: Markov stochastic process

  • Ye YaoEmail author
  • Wandong Cai
  • Vincent Hilaire
  • Abder Koukam
  • Chonggang Wang
Article

Abstract

On the basis of analysis on the scene files of mobility models in Ad Hoc network, the paper presents a network topology snapshots capturing method to obtain the Ad Hoc network topology architecture at any moment. Through analyzing on the Ad Hoc network topology snapshots, some dynamic characteristic parameters of Ad Hoc network, such as the number of network topology in steady state or unsteady state appearing during a certain time, as well as the durative time of network topology in steady state or unsteady state, could be obtained statistically. Furthermore, the probability of the network topology invariability and variability event could be predicated by adopting the discrete time and continuous time Markov stochastic process theory. The simulation result shows that the statistical analysis technique on Ad Hoc network topology dynamic characteristic not only is effective, but also has the general attribute, which could be used in the statistical analysis technique on Ad Hoc network topology dynamic characteristic under any mobility models.

Keywords

Topology dynamic characteristic Mobility model Statistical analysis technique Ad Hoc network 

Notes

Acknowledgements

The support of the Ph.D. Programs Foundation of Ministry of Education of China under grant No. 200806990030, the Fundamental Research Foundation of Northwestern Polytechnical University of China under grant No. JC201149, and the Shaanxi Province Remote Education Research Center Foundation of China under grant No. 10YB002, is gratefully acknowledged. The authors also acknowledge the support of SeT laboratory of Belfort Montbéliard Technology University (UTBM) in France. The author also acknowledge the support of Open Project Foundation of Information Technology Research Base of Civil Aviation Administration of China under grant No. CAAC-ITRB-201202.

The authors gratefully acknowledge the support of The Ph.D. Programs Foundation of Ministry of Education of China, and The Fundamental Research Foundation of Northwestern Polytechnical University in P.R. China.

References

  1. 1.
    Boleng, J., Navidi, W., & Camp, T. (2002). Metrics to enable adaptive protocols for mobile ad hoc networks. In Proceedings of the international conference on wireless networking (ICWN’2002) (pp. 293–298). Google Scholar
  2. 2.
    Costa, X. P., Bettstetter, C., & Hartenstein, H. (2003). Toward a mobility metric for comparable and reproducible results in ad hoc networks research. Mobile Computing and Communications Review, 7(4), 58–60. doi: 10.1145/965732.965745. CrossRefGoogle Scholar
  3. 3.
    Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing: Special issue on mobile ad hoc networking: research, trends and applications, 2(5), 483–502. doi: 10.1002/wcm.72. CrossRefGoogle Scholar
  4. 4.
    Zhang, Q., Hong, X., & Ray, S. (2004). Recent advances in mobility modeling for mobile ad hoc network. In Proc ACM the 42nd annual southeast regional conference, Alabama (pp. 70–75). doi: 10.1145/986537.986554. CrossRefGoogle Scholar
  5. 5.
    Long, Y. P., & Chang, T. (2005). Simulation model of topology generation in hierarchical distributed ad hoc networks. Chinese Journal of System Simulation, 17(6), 1405–1407. Google Scholar
  6. 6.
    Hou, T. C., Wu, C. M., & Chan, M. C. (2003). Performance evaluation of wireless multihop ad hoc networks using IEEE 802.11 DCF protocol. IEICE Transactions on Communications, 86-B(10), 3004–3012. Google Scholar
  7. 7.
    Xavier, P. C., Christian, B., & Hannes, H. (2003). Toward a mobility metric for comparable and reproducible results in ad hoc networks research. Mobile Computing and Communications Review, 7(4), 58–60. doi: 10.1145/965732.965745. CrossRefGoogle Scholar
  8. 8.
    Bandyopadhyay, S., Coyle, E. J., & Falck, T. (2007). Stochastic properties of mobility models in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(11), 1218–1229. doi: 10.1109/TMC.2007.1014. CrossRefGoogle Scholar
  9. 9.
    Sadagopan, N., Bai, F., Krishnamachari, B., & Helmy, A. (2003). Paths: analysis of path duration statistics and their impact on reactive Manet routing protocols. In Proceedings of the 4th ACM international symposium on mobile ad hoc networking and computing (MobiHoc ’03) (pp. 245–256). New York: ACM. doi: 10.1145/778415.778444. CrossRefGoogle Scholar
  10. 10.
    Tian, G., Cai, W., & Wang, W. (2008). Topology variety model for mobile ad hoc networks. In Mobilware ’08, Innsbruck, Austria (Vol. 278). Google Scholar
  11. 11.
    Wang, W., Cai, W., Wang, B., Li, Y., & Tian, G. (2007). Research on a mobility model based on circle movement in ad hoc network. Chinese Journal of Computer Research and Development, 44(6), 932–938. CrossRefGoogle Scholar
  12. 12.
    Duffield, N. (2006). Network tomography of binary network performance characteristics. IEEE Transactions on Information Theory, 52(12), 5373–5388. CrossRefGoogle Scholar
  13. 13.
    Baloch, R. A., Awan, I., & Min, G. (2010). A mathematical model for wireless channel allocation and handoff schemes. Telecommunications Systems, 45(4), 275–287. CrossRefGoogle Scholar
  14. 14.
    Castro, R., Coates, M., Liang, G., Nowak, R., & Yu, B. (2004). Network tomography: recent developments. Statistical Science, 19(3), 499–517. doi: 10.1214/088342304000000422. CrossRefGoogle Scholar
  15. 15.
    Arya, V., Duffield, N. G., & Veitch, D. (2008). In Temporal delay tomography: 27th IEEE communications society conference on computer communications (INFOCOM ’2008), Phoenix, AZ, United States, Apr. 13–18 2008 (pp. 870–878). Google Scholar
  16. 16.
    El-Dahshan, E. A. (2011). Genetic algorithm and wavelet hybrid scheme for ECG signal denoising. Telecommunications Systems, 46(3), 209–215. CrossRefGoogle Scholar
  17. 17.
    Lawrence, E., Michailidis, G., & Nair, V. N. (2006). Network delay tomography using flexicast experiments. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 68(5), 785–813. doi: 10.1111/j.1467-9868.2006.00567.x. CrossRefGoogle Scholar
  18. 18.
    Kumar, R., & Kaur, J. (2004). Efficient beacon placement for network tomography. In Proceedings of the 2004 ACM SIGCOMM Internet measurement conference (pp. 181–186). doi: 10.1145/1028788.1028810. Google Scholar
  19. 19.
    Duffield, N. G., Presti, F. L., Paxson, V., & Towsley, D. (2006). Network loss tomography using striped unicast probes. IEEE/ACM Transactions on Networking, 14(4), 697–710. doi: 10.1109/TNET.2006.880182. CrossRefGoogle Scholar
  20. 20.
    Duffield, N. G., Presti, F. L., Paxson, V., & Towsley, D. (2001). Inferring link loss using striped unicast probes. In IEEE INFOCOM ‘2001, Anchorage, Alaska (Vol. 2, pp. 915–923). Google Scholar
  21. 21.
    Cáceres, R., Duffield, N., Horowitz, J., & Towsley, D. (1999). Multicast-based inference of network-internal loss characteristics. IEEE Transactions on Information Theory, 45, 2462–2480. doi: 10.1109/18.796384. CrossRefGoogle Scholar
  22. 22.
    Liang, G., & Yu, B. (2003). Maximum pseudo likelihood estimation in network tomography. IEEE Transactions on Signal Processing, 51(8), 2043–2053. CrossRefGoogle Scholar
  23. 23.
    Information Sciences Institute of University of Southern California (2005). The network simulator 2. Available at: www.isi.edu/nsnam/ns2.
  24. 24.
    Yao, Y., Cai, W., Vincent, H., & Adder, K. (2009). Research on physical topology steady degree of RWP mobility model on ad hoc network. Journal of Computational Information Systems, 5(4), 1203–1211. Google Scholar
  25. 25.
    Yao, Y., Cai, W., & Tian, G. (2009). Research on the link topology lifetime of mobility model in ad hoc network. In NSWCTC ’2009, Wuhan (Vol. 1, pp. 103–107). Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ye Yao
    • 1
    Email author
  • Wandong Cai
    • 1
  • Vincent Hilaire
    • 2
  • Abder Koukam
    • 2
  • Chonggang Wang
    • 3
  1. 1.School of Computer ScienceNorthwestern Polytechnical UniversityXianChina
  2. 2.SeT LaboratoryUTBMBelfortFrance
  3. 3.NEC Laboratories America, Inc.PrincetonUSA

Personalised recommendations