Advertisement

Telecommunication Systems

, Volume 52, Issue 1, pp 317–325 | Cite as

An efficient handoff algorithm based on received signal strength and wireless transmission loss in hierarchical cell networks

  • Peng Xu
  • Xuming Fang
  • Rong He
  • Zheng Xiang
Article

Abstract

Compared with the macrocell systems, the femtocell systems allow users to obtain broadband service with high data rate by using lower costs of transmit power, operation and capital expenditure. Traditional handoff algorithms used in macrocells cannot well satisfy the mobility of users efficiently in hierarchical macro/femto cell networks. In this paper based on the received signal strength (RSS) and wireless transmission loss, a new handoff algorithm in hierarchical cell networks called RWTL-HO is proposed, which considers the discrepancy in transmit power between macrocell and femtocell base stations. The simulation results show that compared with the conventional algorithm, the proposed algorithm improves the utilization of femtocells by doubling the number of handoffs; and in comparison with the handoff algorithm based on combining the RSSs from both macro and femto cell base stations, reduces half the number of redundant handoffs.

Keywords

RSS Wireless transmission loss Hierarchical networks Transmit power 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, S., Zhang, X., Zheng, R., et al. (2009). Handover study concerning mobility in the two-hierarchy network. doi: 10.1109/VETECS.2009.5073575.
  2. 2.
    Zhang, J., & de la Roche, G. (2010). Femtocells: technologies and deployment (pp. 1–13). Singapore: Wiley. CrossRefGoogle Scholar
  3. 3.
    Calin, D., Claussen, H., & Uzunalioglu, H. (2010). On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments. IEEE Communications Magazine, 48(1), 26–32. CrossRefGoogle Scholar
  4. 4.
    Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: a survey. IEEE Communications Magazine, 46, 59–67. CrossRefGoogle Scholar
  5. 5.
    Mahmoud, H. A., & Guvenc, I. (2009). A comparative study of different deployment modes for femtocell networks. doi: 10.1109/PIMRC.2009.5449936.
  6. 6.
    Ling, J., Chizhik, D., & Valenzuela, R. (2009). On resource allocation in dense femto-deployments. doi: 10.1109/COMCAS.2009.5385992.
  7. 7.
    Claussen, H. (2007). Performance of macro- and co-channel femtocells in a hierarchical cell structure. doi: 10.1109/PIMRC.2007.4394515.
  8. 8.
    Halgamuge, X., et al. (2005). Signal-based evaluation of handoff algorithms. IEEE Communications Letters, 9(9), 790–792. CrossRefGoogle Scholar
  9. 9.
    Hsin-Piao, L., Rong-Terng, J., & Ding-Bing, L. (2005). Validation of an improved location-based handover algorithm using GSM measurement data. IEEE Transactions on Mobile Computing, 4(5), 530–536. CrossRefGoogle Scholar
  10. 10.
    Denko, M. K. (2006). A mobility management scheme for hybrid wired and wireless networks. doi: 10.1109/AINA.2006.36.
  11. 11.
    Moon, J.-M., & Cho, D.-H. (2009). Efficient handoff algorithm for inbound mobility in hierarchical macro/femto cell networks. IEEE Communications Letters, 13(10), 755–757. CrossRefGoogle Scholar
  12. 12.
    Gudmundson, M. (1991). Correlation model for shadow fading in mobile radio systems. Electronics Letters, 27(23), 2145–2146. CrossRefGoogle Scholar
  13. 13.
    Itoh, K.-I., Watanabe, S., Shih, J.-S., et al. (2002). Performance of handoff algorithm based on distance and RSSI measurements. IEEE Transactions on Vehicular Technology, 51(6), 1460–1468. CrossRefGoogle Scholar
  14. 14.
    Zhang, N., & Jack, M. H. (1996). Analysis of handoff algorithm using both absolute and relative measurements. IEEE Transactions on Vehicular Technology, 45(1), 174–179. CrossRefGoogle Scholar
  15. 15.
    Polyanin, A. D., & Manzhirov, A. V. (2007). Handbook of mathematics for engineers and scientists. In Probability theory (pp. 1031–1079). Boca Raton: Chapman & Hall/CRC. Google Scholar
  16. 16.
    Zahran, A. H., Liang, B., & Saleh, A. (2006). Signal threshold adaptation for vertical handoff in heterogeneous wireless networks. Mobile Networks and Applications, 11(4), 625–640. CrossRefGoogle Scholar
  17. 17.
    Soong, T. T. (2004). Fundamentals of probability and statistics for engineers. In Random variables and probability distributions (pp. 37–67). Chichester: Wiley. Google Scholar
  18. 18.
    Howard, T. (2008). 3G home NodeB study item technical report (Release 8), 3GPP TR 25.820 V.2.0.0. http://www.3gpp.org/ftp/Specs/html-info/25820.htm. Accessed 15 November 2010.
  19. 19.
    Qualcomm Europe (2007). HNB and HNB–macro propagation models, 3GPP R4-071617. http://www.3gpp.org/ftp/tsg_ran/wg4_radio/TSGR4_44bis/Docs/. Accessed 25 October 2010.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Lab of Information Coding & TransmissionSouthwest Jiaotong UniversityChengduChina

Personalised recommendations