Telecommunication Systems

, Volume 52, Issue 2, pp 1247–1268 | Cite as

Towards an energy-aware Internet: modeling a cross-layer optimization approach

  • Sergio Ricciardi
  • Davide Careglio
  • Germán Santos-Boada
  • Josep Solé-Pareta
  • Ugo Fiore
  • Francesco Palmieri


The containment of power consumption and the use of alternative green sources of energy are the new main goals of telecommunication operators, to cope with the rising energy costs, the increasingly rigid environmental standards, and the growing power requirements of modern high-performance networking devices. To address these challenges, we envision the necessity of introducing energy-efficiency and energy-awareness in the design, configuration and management of networks, and specifically in the design and implementation of enhanced control-plane protocols to be used in next generation networks. Accordingly, we focus on research and industrial challenges that foster new developments to decrease the carbon footprint while leveraging the capacities of highly dynamic, ultra-high-speed, networking. We critically discuss current approaches, research trends and technological innovations for the coming green era and we outline future perspectives towards new energy-oriented network planning, protocols and algorithms. We also combine all the above elements into a comprehensive energy-oriented network model within the context of a general constrained routing and wavelength assignment problem framework, and analyze and quantify through ILP formulations the savings that can be attained on the next generation networks.


Energy efficiency Energy-awareness Energy-oriented network models Power consumption minimization Carbon footprint minimization Integer Linear Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BONE project (2009). WP 21 topical project green optical networks (Report on year 1 and updated plan for activities). NoE, FP7-ICT-2007-1 216863 BONE project, Dec. 2009. Google Scholar
  2. 2.
    Baliga, J., et al. (2009). Energy consumption in optical IP networks. Journal of Lightwave Technology, 27(13), 2391–2403. CrossRefGoogle Scholar
  3. 3.
    Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the IEEE, 86, 82–85. CrossRefGoogle Scholar
  4. 4.
    Gilder, G. F. (2000). Telecosm: how infinite bandwidth will revolutionize our world. New York: The Free Press. Google Scholar
  5. 5.
    Jevons, W. S. (1866). The coal question; an inquiry concerning the progress of the nation, and the probable exhaustion of our coalmines. London: Macmillan. Google Scholar
  6. 6.
    Smart Grid Task Forces (2011). Office of Electricity Delivery & Energy Reliability, Washington, DC.
  7. 7.
    Karg, L. (2010). Consult GmbH, keynote speech. In e-Energy 2010, Passau, Germany Apr. 2010. Google Scholar
  8. 8.
    Lam, W. (2009). Getting the most out of Google’s solar panels. Jul. 2009 [online]. Available:
  9. 9.
    St Arnaud, B. (2011). ICT and Global Warming: Opportunities for Innovation and Economic Growth.
  10. 10.
    Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., & Wright, S. (2008). Power awareness in network design and routing. In Proc. IEEE INFOCOM. Google Scholar
  11. 11.
    Gupta, M., & Singh, S. (2003). Greening of the Internet. In Proc. of the ACM SIGCOMM, Karlsruhe, Germany Google Scholar
  12. 12.
    Feng, M. Z., Hilton, K., Ayre, R., & Tucker, R. (2010). Reducing NGN energy consumption with IP/SDH/WDM. In Proceedings of the 1st international conference on energy-efficient computing and networking, Passau, Germany (pp. 187–190). CrossRefGoogle Scholar
  13. 13.
    Vereecken, W., Van Heddeghem, W., Colle, D., Pickavet, M., & Demeester, P. (2010). Overall ICT footprint and green communication technologies. In Proc. of ISCCSP 2010, Limassol, Cyprus Mar. 2010. Google Scholar
  14. 14.
    Ricciardi, S., Careglio, D., Fiore, U., Palmieri, F., Santos-Boada, G., & Solé-Pareta, J. (2011). Analyzing local strategies for energy efficient networking. In Proceedings of sustainable networking SUNSET 2011, IFIP networking 2011, Valencia, 9–13 May 2011. Google Scholar
  15. 15.
    Saleh, B. E. A., & Teich, M. C. (1991). Fundamentals of photonics. New York: Wiley. CrossRefGoogle Scholar
  16. 16.
    The Energy Consumption Rating (ECR) initiative (2011). [online]. Available:
  17. 17.
    Miller, D. A. B. (2010). Are optical transistors the logical next step? Nature Photonics, 4(1), 3–5. CrossRefGoogle Scholar
  18. 18.
    D’Ambrosia, J. 100 Gigabit Ethernet and beyond. IEEE Communications Magazine, March 2010. Google Scholar
  19. 19.
    Anderson, J., & Traverso, M. (2010). Optical transceivers for 100 gigabit Ethernet and its transport. IEEE Communications Magazine, 48(3), S35–S40. CrossRefGoogle Scholar
  20. 20.
    Lange, C. (2009). Energy-related aspects in backbone networks. In Proc. ECOC 2009, Vienna, Austria, Sep. 2009. Google Scholar
  21. 21.
    Tucker, R. S., et al. (2009). Evolution of WDM optical IP networks: a cost and energy perspective. IEEE/OSA Journal of Lightwave Technologies, 27(3), 243–252. CrossRefGoogle Scholar
  22. 22.
    The Green Grid (2008). The green grid data center power efficiency metrics: PUE and DCiE. Technical Committee White Paper. Google Scholar
  23. 23.
    Christensen, K., Reviriego, P., Nordman, B., Bennett, M., Mostowfi, M., & Maestro, J. A. (2010). IEEE 802.3az: the road to energy efficient Ethernet. IEEE Communications Magazine, 48(11), 50–56. CrossRefGoogle Scholar
  24. 24.
    Hays, R. (2008). Active/idle toggling with low-power idle. In IEEE 802.3az task force group meeting. [online]. Available: Google Scholar
  25. 25.
    Zhai, B., Blaauw, D., et al. (2004). Theoretical and practical limits of dynamic voltage scaling. In DAC. Google Scholar
  26. 26.
    Christensen, K., & Nordman, B. (2005). Reducing the energy consumption of networked devices, IEEE 802.3 tutorial, July 19, 2005, San Francisco [online]. Available:
  27. 27.
    Van Heddeghem, W., De Groote, M., Vereecken, W., Colle, D., Pickavet, M., & Demeester, P. (2010). Energy-efficiency in telecommunications networks: link-by-link versus end-to-end grooming. In Proc. of ONDM 2010, Kyoto, Japan, Feb. 1–3 2010. Google Scholar
  28. 28.
    Tucker, R. S. (2011). Modelling Energy Consumption in IP Networks, [online]. Available:
  29. 29.
    Aleksic, S. (2009). Analysis of power consumption in future high-capacity network nodes. Journal of Optical Communications and Networking, 1(3), 245–258. CrossRefGoogle Scholar
  30. 30.
    Energy Star (2011). Small network equipment [online]. Available:
  31. 31.
    Ricciardi, S., Careglio, D., Palmieri, F., Fiore, U., Santos-Boada, G., & Solé-Pareta, J. (2010). Energy-oriented models for WDM networks. In Proceedings of 7th international ICST conference on broadband communications, networks, and systems (Broadnets 2010), Athens, Greece, 25–27 Oct. 2010 (pp. 1–4). Google Scholar
  32. 32.
    Ricciardi, S., Careglio, D., Palmieri, F., Fiore, U., Santos-Boada, G., & Solé-Pareta, J. (2011). Energy-aware RWA for WDM networks with dual power sources. In Proceedings of 2011 IEEE international conference on communications (ICC 2011), Kyoto, Japan, June 5–9, 2011. Google Scholar
  33. 33.
    Nortel (2011). A comparison of next-generation 40-Gbps technologies. White paper [online]. Available:
  34. 34.
    Koroneos, C. J., & Koroneos, Y. (2007). Renewable energy systems: the environmental impact approach. International Journal of Global Energy Issues, 27(4), 425–441. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sergio Ricciardi
    • 1
  • Davide Careglio
    • 1
  • Germán Santos-Boada
    • 1
  • Josep Solé-Pareta
    • 1
  • Ugo Fiore
    • 2
  • Francesco Palmieri
    • 3
  1. 1.Dept. d’Arquitectura de ComputadorsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Complesso Universitario Monte S.AngeloUniversità di Napoli Federico IINapoliItaly
  3. 3.Dipartimento di Ingegneria dell’InformazioneSeconda Università di NapoliAversaItaly

Personalised recommendations