Telecommunication Systems

, Volume 52, Issue 2, pp 1305–1312

Uplink energy efficiency analysis for two-tier cellular access networks using kernel function

Article
  • 221 Downloads

Abstract

In this paper, the uplink energy efficiency and uplink outage probability for two-tier cellular access networks (TTCANs) are investigated. To model of the uplink energy efficiency and uplink outage probability in TTCANs, a closed-form expression of signal-to-interference ratio (SIR) is derived by considering the on/off states of femtocell access points (APs). Moreover, a second order kernel function is firstly used to solve the analytical interference model with femtocell APs turning on in TTCANs. Simulation results show that femtocell user’s intensity has great impact on the uplink energy efficiency and uplink outage probability in a TTCAN. These results provide some guidelines for developing new energy saving schemes in practical TTCANs deployment.

Keywords

Femtocell Energy efficiency Kernel function Signal-to-interference ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: a survey. IEEE Communications Magazine, 46(9), 59–67. CrossRefGoogle Scholar
  2. 2.
    Badic, B., O’Farrell, T., Loskot, P., & He, J. (2009). Energy efficient radio access architectures for green radio: large versus small cell size deployment. In IEEE 70th vehicular technology conference fall 2009, Anchorage, Alaska, USA, Sept. 2009. Google Scholar
  3. 3.
    Marsan, M. A., Chiaraviglio, L., Ciullo, D., & Meo, M. (2009). Optimal energy savings in cellular access networks. In IEEE international conference on communications workshops 2009, Dresden, Germany, June, 2009. Google Scholar
  4. 4.
    Ho, L. T. W., & Claussen, H. (2007). Effects of user-deployed, co-channel femtocells on the call drop probability in a residential scenario. In IEEE 18th international symposium on personal, indoor and mobile radio communications 2007, Sept. 2007. Google Scholar
  5. 5.
    Akhtman, J., & Hanzo, L. (2009). Power versus bandwidth efficiency in wireless communication: The economic perspective. In IEEE proc. conf. veh. technol., Sept. 2009. Google Scholar
  6. 6.
    Miao, G. W., Himayat, N., Li, Y. G., & Swami, A. (2009). Cross-layer optimization for energy-efficient wireless communications: a survey. Wireless Communications and Mobile Computing, 9(4), 529–542. CrossRefGoogle Scholar
  7. 7.
    Richter, F., Fehske, A. J., & Fettweis, G. P. (2009). Energy efficiency aspects of base station deployment strategies for cellular networks. In IEEE proc. conf. GlobeCom., Nov. 2009. Google Scholar
  8. 8.
    Meshkati, F., Poor, V., & Schwartz, S. (2007). Energy-efficient resource allocation in wireless networks. IEEE Signal Processing Magazine, 24(3), 58–68. CrossRefGoogle Scholar
  9. 9.
    Ge, X., Cao, C., Jo, M., Chen, M., Hu, J., & Humar, I. (2010). Energy efficiency modelling and analyzing based on multi-cell and multi-antenna cellular networks. KSII Transactions on Internet and Information Systems, 4(4), 560–574. Google Scholar
  10. 10.
    Chandrasekhar, V., & Andrews, J. G. (2009). Uplink capacity and interference avoidance for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(7), 3498–3509. CrossRefGoogle Scholar
  11. 11.
    Chandrasekhar, V., Andrews, J. G., Muharemovic, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328. CrossRefGoogle Scholar
  12. 12.
    Chandrasekhar, V., Kountouris, M., & Andrews, J. G. (2009). Coverage in multi-antenna two-tier networks. IEEE Transactions on Wireless Communications, 8(10), 5314–5327. CrossRefGoogle Scholar
  13. 13.
    Fengming, C., & Zhong, F. (2010). The tradeoff between energy efficiency and system performance of femtocell deployment. In 7th International symposium on wireless communication systems (ISWCS) 2010. Google Scholar
  14. 14.
    Sahin, M.E., Guvenc, I., Moo-Ryong, J., & Arslan, H. (2009). Handling CCI and ICI in OFDMA femtocell networks through frequency scheduling. IEEE Transactions on Consumer Electronics, 55(4), 1936–1944. CrossRefGoogle Scholar
  15. 15.
    Taeyoung, L., Hyuntai, K., Jinhyun, P., & Jitae, S. (2010). An efficient resource allocation in OFDMA femtocells networks. In IEEE 72nd vehicular technology conference fall (VTC-2010-Fall), 2010. Google Scholar
  16. 16.
    Lee, J., Bae, S., Kwon, Y., & Chung, M. (2011). Interference analysis for femtocell deployment in OFDMA systems based on fractional frequency reuse. IEEE Communications Letters, 8(99), 1–3. Google Scholar
  17. 17.
    Ying, H., & Laurenson, D. I. (2010). Energy efficiency of high QoS heterogeneous wireless communication network. In IEEE 72nd vehicular technology conference fall (VTC 2010-Fall) 2010. Google Scholar
  18. 18.
    Kan, Z., Fanglong, H., Lei, L., & Wenbo, W. (2010). Interference coordination between femtocells in LTE-advanced networks with carrier aggregation. In 5th International ICST conference on communications and networking in China (CHINACOM), 2010. Google Scholar
  19. 19.
    Simon, M. K., & Alouini, M. S. (2000). Digital communication over fading channels: a unified approach to performance analysis. New York: Wiley. CrossRefGoogle Scholar
  20. 20.
    Goldsmith, A. (2005). Wireless communications. New York: Cambridge University Press. CrossRefGoogle Scholar
  21. 21.
    Shin, E. J., & Chan, V. W. S. (2002). Optical communication over the turbulent atmospheric channel using spatial diversity. In IEEE GLOBECOM, Nov. 2002. Google Scholar
  22. 22.
    Schwartz, S. C., & Yeh, Y. S. (1982). On the distribution function and moments of power sums with log-normal components. The Bell System Technical Journal, 61(7), 1441–1462. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electronics and Information EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Computer Science and EngineeringSeoul National UniversitySeoulKorea
  3. 3.College of Information and CommunicationKorea UniversitySeoulSouth Korea

Personalised recommendations