Telecommunication Systems

, Volume 52, Issue 4, pp 2573–2583 | Cite as

Application of energy efficient soft-decision error control in wireless sensor networks

  • Jasvinder SinghEmail author
  • Dirk Pesch


Energy efficient reliable communication over an unpredictable wireless medium is a major challenge for resource constrained wireless sensor nodes in process/environment control application. In this paper, we propose a Soft Decision Decoding (SDD) based advanced Forward Error Correction (FEC) scheme for low power distributed sensor nodes. The proposed BCH (Bose-Chaudhuri-Hocquenghem) based adaptive Chase-2 decoding scheme offers attractive energy benefits as compared to Hard Decision Decoding (HDD). The reduced decoding complexity is obtained by limiting the codeword search space and fewer algebraic operations compared to standard Chase-2. A realistic environmental scenario incorporating path loss, Rayleigh fading and Additive White Gaussian Noise has been considered to investigate the performance of the proposed scheme. A detailed comparison is carried out with HDD of BCH codes using the widely known Crossbow MicaZ node parameters. The simulation results indicate that for low power WSN, the proposed SDD based adaptive scheme offers better tradeoff between energy and reliability than HDD schemes.


Forward Error Correction (FEC) BCH HDD SDD Chase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rohani, B., & Homayounfar, K. Computation of instantaneous bit error probability from log-likelihood ratio. In RCS2008-150 (pp. 119–123). Google Scholar
  2. 2.
    Argon, C., & McLaughlin, S. W. (2004). An efficient Chase decoder for turbo product codes. In IEEE trans. on communications (Vol. 52(6)). Google Scholar
  3. 3.
    Chase, D. (1972). A class of algorithms for decoding block codes with channel measurement information. In IEEE trans. inform. theory (Vol. IT-18, pp. 170–182). Google Scholar
  4. 4.
    Schmidt, D., Berning, M., & Wehn, N. (2009). Error correction in single-hop wireless sensor networks-a case study. In Proceedings of the IEEE conference on design, automation, and test in Europe (DATE’09) (pp. 1296–1301). Google Scholar
  5. 5.
    Balakrishnan, G., Yang, M., Jiang, Y., & Kim, Y. (2007). Performance analysis of error control codes for wireless sensor networks. In Fourth international conference on information technology (ITNG’07). Google Scholar
  6. 6.
    Sharma, G., Dholakia, A., & Hassan, A. A. (1996). Simulation of error trapping decoders on a fading channel. In Proc. 1996 IEEE vehicular technology conf. (pp. 1361–1365). Google Scholar
  7. 7.
    Dubois-Ferriere, H., Estrin, D., & Vetterli, M. (2005). Packet combining in sensor networks. In Proceedings of the sensys’05. Google Scholar
  8. 8.
    Wireless Medium Access Control (MAC) and Physical Layer (PHY) (2006). Specifications for low-rate wireless personal area networks (WPANs). IEEE Std. 802.15.4, September 2006. Google Scholar
  9. 9.
    Jamieson, K. (2008). The SoftPHY abstraction: from packets to symbols in wireless network design. Ph.D. thesis, Massachusetts Institute of Technology. Google Scholar
  10. 10.
    Vuran, M. C., & Akyildiz, I. F. (2009). Error control in wireless sensor networks: a cross layer analysis. IEEE/ACM Transactions on Networking, 17(4), 1186–1199. CrossRefGoogle Scholar
  11. 11.
    MicaZ Datasheet. Crossbow Corp. [Online]
  12. 12.
    Maunder, R. G., Weddell, A. S., Merrett, G. V., Al-Hashimi, B. M., & Hanzo, L. (2008). Iterative decoding for redistributing energy consumption in wireless sensor networks. In IEEE international conference on computer communications and networks, St. Thomas, US Virgian Islands (pp. 1–6). Google Scholar
  13. 13.
    Herzog, R., Hagenauer, J., & Schmidbauer, A. (1997). Soft-in/soft-out Hadamard despreader for iterative decoding in the IS-95(A) system. In Proceedings of the IEEE vehicular technology conference (Vol. 2, pp. 1219–1222). Google Scholar
  14. 14.
    Morelos-Zaragoza, R. H. (2002). The art of error correcting codes. New York: Wiley. CrossRefGoogle Scholar
  15. 15.
    Pyndiah, R. (1997). Iterative decoding of product codes: block turbo codes. In International symposium on turbo codes, Brest, France. Google Scholar
  16. 16.
    Yazdani, R., & Ardakani, M. (2007). Optimum linear LLR calculation for iterative decoding on fading channels. In Information theory, 2007. ISIT 2007. IEEE international symposium (pp. 61–65). CrossRefGoogle Scholar
  17. 17.
    Lin, S., & Costello, D. J. Jr. (2004). Error control coding. Fundamentals and applications (2nd ed.). New York: Prentice Hall. Google Scholar
  18. 18.
    Rappaport, T. S. (2001). Wireless communications: principals and practice (2nd ed.). New York: Prentice Hall. Google Scholar
  19. 19.
    Xia, F. (2008). QoS challenges and opportunities in wireless sensor/actuator networks. Sensors, 8(2), 1099–1110. CrossRefGoogle Scholar
  20. 20.
    Sankarasubramaniam, Y., Akyildiz, I. F., & McLaughlin, S. W. (2003). Energy efficiency based packet size optimization in wireless sensor networks. In Proc. IEEE internal workshop on sensor network protocols and applications (pp. 1–8). CrossRefGoogle Scholar
  21. 21.
    Kashani, Z. H., & Shiva, M. (2006). BCH coding and multi-hop communication in wireless sensor networks. In International conference on embedded and ubiquitous computing (IFIP’06). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nimbus Centre for Embedded Systems Research, Department of Electronic EngineeringCork Institute of TechnologyCorkIreland

Personalised recommendations