Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation

Invited paper

  • 2320 Accesses

  • 80 Citations

Abstract

As the Internet becomes increasingly important to all aspects of society, the consequences of disruption become increasingly severe. Thus it is critical to increase the resilience and survivability of future networks. We define resilience as the ability of the network to provide desired service even when challenged by attacks, large-scale disasters, and other failures. This paper describes a comprehensive methodology to evaluate network resilience using a combination of topology generation, analytical, simulation, and experimental emulation techniques with the goal of improving the resilience and survivability of the Future Internet.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A roadmap for cybersecurity research (2009). Technical report, Department of Homeland Security (DHS).

  2. 2.

    Africa: Population Density (2000). Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Palisades, NY: Center for International Earth Science Information Network (CIESIN), Columbia University. Available at http://sedac.ciesin.columbia.edu/gpw.

  3. 3.

    Alderson, D., Doyle, J., Govindan, R., & Willinger, W. (2003). Toward an optimization-driven framework for designing and generating realistic Internet topologies. Computer Communication Review, 33(1), 41–46.

  4. 4.

    Alderson, D., Li, L., Willinger, W., & Doyle, J. C. (2005). Understanding Internet topology: principles, models, and validation. IEEE/ACM Transactions on Networking, 13(6), 1205–1218.

  5. 5.

    Antonopoulos, A. (1999). Metrication and performance analysis on resilience of ring-based transport network solutions. In GLOBECOM’99: global telecommunications conference (Vol. 2, pp. 1551–1555).

  6. 6.

    Avizienis, A. (1967). Design of fault-tolerant computers. AFIPS Conference Proceedings, 31, 733–743. Thompson Books 1967 fall joint computer conf.

  7. 7.

    Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.

  8. 8.

    Bacher, R., & Näf, U. (2003). Report on the blackout in Italy on 28 September 2003. (Report). Swiss Federal Office of Energy (SFOE).

  9. 9.

    Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512 http://www.sciencemag.org/cgi/content/abstract/286/5439/509.

  10. 10.

    Bassiri, B., & Heydari, S. S. (2009). Network survivability in large-scale regional failure scenarios. In Proceedings of the 2nd Canadian conference on computer science and software engineering (C3S2E) (pp. 83–87). New York: ACM Press.

  11. 11.

    Beaudry, M. (1978). Performance-related reliability measures for computing systems. IEEE Transactions on Computers, 27, 540–547.

  12. 12.

    Bhandari, R. (1998). Survivable networks: algorithms for diverse routing. Norwell: Kluwer Academic.

  13. 13.

    Bhattacharjee, B., Calvert, K., Griffioen, J., Spring, N., & Sterbenz, J. P. G. (2006). Postmodern internetwork architecture (Technical Report ITTC-FY2006-TR-45030-01). Information and Telecommunication Center, 2335 Irving Hill Road, Lawrence, KS 66045-7612.

  14. 14.

    Bouabene, G., Jelger, C., Tschudin, C., Schmid, S., Keller, A., & May, M. (2010). The autonomic network architecture (ANA). IEEE Journal on Selected Areas in Communications, 28(1), 4–14.

  15. 15.

    CAIDA: Cooperative Association for Internet Data Analysis (caida) (2009). http://www.caida.org/home/.

  16. 16.

    Calvert, K., Doar, M., & Zegura, E. (1997). Modeling Internet topology. IEEE Communications Magazine, 35(6), 160–163.

  17. 17.

    Calvert, K. L., Bhattacharjee, S., Zegura, E. W., & Sterbenz, J. P. G. (1998). Directions in active networks. IEEE Communications Magazine, 36(10), 72–78.

  18. 18.

    Carlson, J. M., & Doyle, J. (1999). Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60(2), 1412–1427.

  19. 19.

    Center for International Earth Science Information Network (CIESIN) (2011). Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3): Population Density Grids. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University: http://sedac.ciesin.columbia.edu/gpw.

  20. 20.

    Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2010). A comprehensive framework to simulate network attacks and challenges. In Proceedings of the 2nd IEEE/IFIP international workshop on reliable networks design and modeling (RNDM), Moscow, Russia, pp. 538–544.

  21. 21.

    Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2011). Modelling communication network challenges for future internet resilience, survivability, and disruption tolerance: a simulation-based approach. Telecommunication Systems (in this issue).

  22. 22.

    Cgal (2011). Computational Geometry Algorithms Library. http://www.cgal.org.

  23. 23.

    Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: laws generators, and algorithms. ACM Computing Surveys, 38(1), 2.

  24. 24.

    Chen, Q., Chang, H., Govindan, R., & Jamin, S. (2002). The origin of power laws in Internet topologies revisited. In Proceedings of the 21st annual joint conference of the IEEE computer and communications societies (INFOCOM) (Vol. 2, pp. 608–617).

  25. 25.

    Cherukuri, R., Liu, X., Bavier, A., Sterbenz, J., & Medhi, D. (2011). Network virtualization in GpENI: framework, implementation & integration experience. In IEEE/IFIP ManFI, Dublin, Ireland, pp. 1216–1223.

  26. 26.

    Clark, D., Sollins, K., Wroclawski, J., Katabi, D., Kulik, J., Yang, X., Braden, R., Faber, T., Falk, A., Pingali, V., Handley, M., & Chiappa, N. (2003). New arch: future generation, Internet architecture (Technical report). DARPA, MIT, ISI.

  27. 27.

    Clark, D. D., Wroclawski, J., Sollins, K. R., & Braden, R. (2005). Tussle in cyberspace: defining tomorrow’s Internet. IEEE/ACM Transactions on Networking, 13(3), 462–475.

  28. 28.

    Cowie, J. Lights Out in Rio (2009). http://www.renesys.com/blog/2009/11/lights-out-in-rio.shtml.

  29. 29.

    Cowie, J. Japan Quake (2011). http://www.renesys.com/blog/2011/03/japan-quake.shtml.

  30. 30.

    Cowie, J. H., Ogielski, A. T., Premore, B., Smith, E. A., & Underwood, T. (2003). Impact of the 2003 blackouts on Internet communications (Preliminary Report). Renesys Corporation (updated March 1, 2004).

  31. 31.

    Cowie, J., Popescu, A., & Underwood, T. (2005). Impact of hurricane Katrina on Internet infrastructure (Report). Renesys

  32. 32.

    Davis, T., Rogers, H., & Shays, C. (2006). Others: a failure of initiative: the final report of the select bipartisan committee to investigate the preparation for and response to hurricane Katrina (Congressional Report H.Rpt. 109-377). US House of Representatives, Washington, DC.

  33. 33.

    Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., & Zambonelli, F. (2006). A survey of autonomic communications. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 223–259.

  34. 34.

    Doerr, C., & Hernandez, J. M. (2010). A computational approach to multi-level analysis of network resilience. In Proceedings of the third international conference on dependability (DEPEND) (pp. 125–132).

  35. 35.

    Doyle, J. C., Alderson, D. L., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R., & Willinger, W. (2005). The “robust yet fragile” nature of the Internet. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14 497–14,502.

  36. 36.

    Dynamic resource allocation via GMPLS optical network (2009). http://dragon.maxgigapop.net/.

  37. 37.

    Edwards, N. (1994). Building dependable distributed systems (Technical Report). APM.1144.00.02, ANSA.

  38. 38.

    Ellinas, G., & Stern, T. (1996). Automatic protection switching for link failures in optical networks with bi-directional links. In Proceedings of the global telecommunications conference (GLOBECOM) (Vol. 1, pp. 152–156).

  39. 39.

    Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T., & Mead, N. R. (1999). Survivable network systems: an emerging discipline (Tech. Rep. CMU/SEI-97-TR-013). Software Engineering Institute, Carnegie Mellon University, PA.

  40. 40.

    Ellison, R., Fisher, D., Linger, R., Lipson, H., Longstaff, T., & Mead, N. (1997). Survivable network systems: an emerging discipline (Tech. Rep. CMU/SEI-97-TR-013). Software Engineering Institute. Carnegie Mellon University.

  41. 41.

    Emulab: Network emulation testbed (2009). http://www.emulab.net/.

  42. 42.

    Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.

  43. 43.

    European information society (2010). http://ec.europa.eu/information_society/policy/nis/strategy/activities/ciip/index_en.htm.

  44. 44.

    Fabrikant, A., Koutsoupias, E., & Papadimitriou, C. (2002). Heuristically optimized trade-offs: a new paradigm for power laws in the internet. In Lecture notes in computer science (pp. 110–122). Berlin: Springer.

  45. 45.

    Fall, K. (2003). A delay-tolerant network architecture for challenged Internets. In SIGCOMM ’03: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (pp. 27–34). New York: ACM Press.

  46. 46.

    Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the Internet topology. In SIGCOMM ’99: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication (pp. 251–262). New York: ACM Press.

  47. 47.

    Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., & Zhang, L. (2001). IDMaps: a global Internet host distance estimation service. IEEE/ACM Transactions on Networking, 9(5), 525–540.

  48. 48.

    Frank, H. (1974). Survivability analysis of command and control communications networks—part I. IEEE Transactions on Communications, 22(5), 589–595.

  49. 49.

    Frank, H., & Frisch, I. (1970). Analysis and design of survivable networks. IEEE Transactions on Communication Technology, 18(5), 501–519.

  50. 50.

    Fry, M., Fischer, M., Karaliopoulos, M., Smith, P., & Hutchison, D. (2010). Challenge identification for network resilience. In Proc. of the IEEE 6th EURO-NF conference on next generation internet (NGI) (pp. 1–8).

  51. 51.

    Gan, Q., & Helvik, B. (2006). Dependability modelling and analysis of networks as taking routing and traffic into account. In NGI ’06: Proceedings of the conference on next generation Internet design and engineering.

  52. 52.

    Gay, F., & Ketelsen, M. (1979). Performance evaluation for gracefully degrading systems. In Proc. of the 9th annual int. symp. on fault tolerant computing (pp. 51–58).

  53. 53.

    GÉANT2 (2009). http://www.geant2.net/.

  54. 54.

    Goodman, S., & Lin, H. (2007). Toward a safer and more secure cyberspace. National Academies Press.

  55. 55.

    Grover, W. D. (2004). Mesh-based survivable networks. Upper Saddle River: Prentice Hall PTR Pearson.

  56. 56.

    Grover, W. D., & Stamatelakis, D. (1998). Cycle-oriented distributed preconfiguration: ring-like speed with mesh-like capacity for self-planning network restoration. In Proceeding of the IEEE international conference on communications (ICC’98), (Vol. 1, pp. 537–543).

  57. 57.

    Gush: GENI user shell (2009). http://gush.cs.williams.edu/trac/gush.

  58. 58.

    Haddadi, H., Rio, M., Iannaccone, G., Moore, A., & Mortier, R. (2008). Network topologies: inference, modeling, and generation. IEEE Communications Surveys and Tutorials, 10(2), 48–69.

  59. 59.

    Hagin, A. A. (1994). Performability, reliability, and survivability of communication networks: system of methods and models for evaluation. In Proceedings of the 14th international conference on distributed computing systems (pp. 562–573).

  60. 60.

    Hameed, M. A., Jabbar, A., Çetinkaya, E. K., & Sterbenz, J. P. (2010). Deriving network topologies from real world constraints. In Proceedings of IEEE GLOBECOM workshop on complex and communication networks (CCNet) (pp. 415–419).

  61. 61.

    Hariri, S., Qu, G., Dharmagadda, T., Ramkishore, M., & Raghavendra, C. S. (2003). Impact analysis of faults and attacks in large-scale networks. IEEE Security & Privacy, 01(5), 49–54.

  62. 62.

    Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks, 53(8), 1215–1234. Performance Modeling of Computer Networks: Special Issue in Memory of Dr. Gunter Bolch.

  63. 63.

    Huslende, R. (1981). A combined evaluation of performance and reliability for degradable systems. In Proceedings of the ACM conference on measurement and modeling of computer systems (SIGMETRICS) (pp. 157–164). New York: ACM Press.

  64. 64.

    Jabbar, A. (2010). A framework to quantify network resilience and survivability. Ph.D. thesis, The University of Kansas, Lawrence, KS.

  65. 65.

    Jabbar, A., Rohrer, J. P., Oberthaler, A., Çetinkaya, E. K., Frost, V., & Sterbenz, J. P. G. (2009). Performance comparison of weather disruption-tolerant cross-layer routing algorithms. In Proc. IEEE INFOCOM 2009. The 28th conference on computer communications (pp. 1143–1151).

  66. 66.

    Jabbar, A., Shi, Q., Hameed, M., Çetinkaya, E. K., & Sterbenz, J. P. (2011). ResiliNets topology modelling. https://wiki.ittc.ku.edu/resilinets/Topology_Modelling.

  67. 67.

    Jabbar, A., Narra, H., & Sterbenz, J. P. G. (2011). An approach to quantifying resilience in mobile ad hoc networks. In Proceedings of the 8th IEEE international workshop on the design of reliable communication networks (DRCN).

  68. 68.

    Jackson, A. W., Sterbenz, J. P. G., Condell, M. N., & Hain, R. R. (2002). Active network monitoring and control: the SENCOMM architecture and implementation. In DARPA active networks conference and exposition (DANCE), (pp. 379–393). Los Alamitos: IEEE Computer Society Press.

  69. 69.

    Jamakovic, A., & Uhlig, S. (2007). Influence of the network structure on robustness. In IEEE international conference on networks (ICON) (pp. 278–283).

  70. 70.

    Kitamura, Y., Lee, Y., Sakiyama, R., & Okamura, K. (2007). Experience with restoration of Asia pacific network failures from Taiwan earthquake. IEICE Transactions on Communications, E90-B(11), 3095–3103.

  71. 71.

    KMI Corporation (1999). North American fiberoptic long-haul routes planned and in place.

  72. 72.

    Knight, J. C., Strunk, E. A., & Sullivan, K. J. (2003). Towards a rigorous definition of information system survivability. In Proceedings of the DARPA information survivability conference and exposition DISCEX III, Washington, DC, pp. 78–89.

  73. 73.

    Kuhn, D. (1997). Sources of failure in the public switched telephone network. Computer, 30(4), 31–36.

  74. 74.

    Lakhina, A., Byers, J., Crovella, M., & Matta, I. (2003). On the geographic location of Internet resources. IEEE Journal on Selected Areas in Communications, 21(6), 934–948.

  75. 75.

    Laprie, J. C. (1994). Dependability: basic concepts and terminology. Draft, IFIP Working Group 10.4—Dependable Computing and Fault Tolerance.

  76. 76.

    Laprie, J.-C. (2008). From dependability to resilience. In Proceedings of the 38th IEEE/IFIP international conference on dependable systems and networks (DSN).

  77. 77.

    Li, L., Alderson, D., Willinger, W., & Doyle, J. (2004). A first-principles approach to understanding the Internet’s router-level topology. Computer Communication Review, 34(4), 3–14.

  78. 78.

    Liew, S., & Lu, K. (1992). A framework for network survivability characterization. In SUPERCOMM/ICC’92: proceedings of IEEE international conference on communications (ICC) (pp. 405–410).

  79. 79.

    Liew, S., & Lu, K. (1994). A framework for characterizing disaster-based network survivability. IEEE Journal on Selected Areas in Communications, 12(1), 52–58.

  80. 80.

    Liscouski, B., & Elliot, W. J. (2004). Final report on the august 14, 2003 blackout in the United States and Canada: causes and recommendations (Tech. Rep.). U.S.–Canada Power System Outage Task Force.

  81. 81.

    Liu, Y., Mendiratta, V., & Trivedi, K. (2004). Survivability analysis of telephone access network. In Proceedings of the 15th international symposium on software reliability engineering (pp. 367–378). Washington: IEEE Computer Society.

  82. 82.

    Losq, J. (1977). Effects of failures on gracefully degradable systems. In Proc. of 7th fault-tolerant computing symposium (pp. 29–34).

  83. 83.

    Lyons, R., & Vanderkulk, W. (1962). The use of triple-modular redundancy to improve computer reliability. IBM Journal of Research and Development, 6(2), 200–209.

  84. 84.

    Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K. C., & Vahdat, A. (2006). The Internet AS-level topology: three data sources and one definitive metric. Computer Communication Review, 36(1), 17–26.

  85. 85.

    Mahmood, R. A. (2009). Simulating challenges to communication networks for evaluation of resilience. Master’s thesis, The University of Kansas, Lawrence, KS.

  86. 86.

    Map of Current Interstates (2011). http://en.wikipedia.org/wiki/File:Map_of_current_Interstates.svg.

  87. 87.

    Medhi, D., & Tipper, D. (2000). Multi-layered network survivability-models, analysis, architecture, framework and implementation: an overview. In Proceedings of the DARPA information survivability conference and exposition (DISCEX) (Vol. 1, pp. 173–186).

  88. 88.

    Medina, A., Matta, I., & Byers, J. (2000). On the origin of power laws in Internet topologies. Computer Communication Review, 30(2), 18–28.

  89. 89.

    Meyer, J. (1980). On evaluating the performability of degradable computing systems. IEEE Transactions on Computers, 100(29), 720–731.

  90. 90.

    Meyer, J. F. (2009). Defining and evaluating resilience: a performability perspective. In International workshop on performability modeling of computer and communication systems (PMCCS).

  91. 91.

    Minden, G., Evans, J., Searl, L., DePardo, D., Petty, V., Rajbanshi, R., Newman, T., Chen, Q., Weidling, F., Guffey, J., Datla, D., Barker, B., Peck, M., Cordill, B., Wyglinski, A., & Agah, A. (2007). KUAR: a flexible software-defined radio development platform. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 428–439).

  92. 92.

    Mohammad, A. J., Hutchison, D., & Sterbenz, J. P. G. (2006). Towards quantifying metrics for resilient and survivable networks. In Proceedings of the 14th IEEE international conference on network protocols (ICNP) (pp. 17–18).

  93. 93.

    Molisz, W. (2004). Survivability function-a measure of disaster-based routing performance. IEEE Journal on Selected Areas in Communications, 22(9), 1876–1883.

  94. 94.

    Molisz, W., & Rak, J. (2006). End-to-end service survivability under attacks on networks. Journal of Telecommunications and Information Technology, 3, 19–26.

  95. 95.

    Molisz, W., & Rak, J. (2008). f-cycles—a new approach to providing fast service recovery at low backup capacity overhead. In 10th anniversary international conference on transparent optical networks (ICTON), (Vol. 3, pp. 59–62).

  96. 96.

    Molisz, W., & Rak, J. (2010). Impact of WDM network topology characteristics on the extent of failure losses. In 12th international conference on transparent optical networks (ICTON) (pp. 1–4).

  97. 97.

    Moore, E., & Shannon, C. (1956). Reliable circuits using less reliable relays. Journal of the Franklin Institute, 262(3), 191–208.

  98. 98.

    Motiwala, M., Elmore, M., Feamster, N., & Vempala, S. (2008). Path splicing. In Proceedings of the ACM SIGCOMM conference on data communication (pp. 27–38). New York: ACM Press.

  99. 99.

    Neumayer, S., & Modiano, E. (2010). Network reliability with geographically correlated failures. In Proc. of IEEE INFOCOM (pp. 1–9).

  100. 100.

    Neumayer, S., Zussman, G., Cohen, R., & Modiano, E. (2009). Assessing the vulnerability of the fiber infrastructure to disasters. In Proc. of IEEE INFOCOM (pp. 1566–1574).

  101. 101.

    Ng, Y., & Avizienis, A. (1977). A reliability model for gracefully degrading and repairable fault-tolerant systems. In Proceedings of 7th international symposium on fault-tolerant computing (pp. 29–34). Los Alamitos: IEEE Computing Society Press.

  102. 102.

    Ng, T. S. E., & Zhang, H. (2001). Predicting Internet network distance with coordinates-based approaches. In INFOCOM (pp. 170–179).

  103. 103.

    Nicol, D. M., Sanders, W. H., & Trivedi, K. S. (2004). Model-based evaluation: from dependability to security. IEEE Transactions on Dependable and Secure Computing, 01(1), 48–65.

  104. 104.

    Nussbaumer, J., Patel, B. V., Schaffa, F., & Sterbenz, J. P. G. (1995). Networking requirements for interactive video on demand. IEEE Journal on Selected Areas in Communications, 13, 779–787.

  105. 105.

    Oppenheimer, D., Ganapathi, A., & Patterson, D. A. (2003). Why do Internet services fail, and what can be done about it. In Proc. of USENIX USITS (pp. 1–16).

  106. 106.

    Pierce, W. (1965). Failure-tolerant computer design. San Diego: Academic Press.

  107. 107.

    PlanetLab (2009). http://www.planet-lab.org/.

  108. 108.

    Protecting America’s infrastructures (1997). Report, President’s Commission on Critical Infrastructure Protection.

  109. 109.

    ProtoGENI wiki (2010). http://www.protogeni.net/trac/protogeni.

  110. 110.

    Qu, G., Jayaprakash, R., Hariri, S., & Raghavendra, C. (2002). A framework for network vulnerability analysis. In CT ’02: Proceedings of the 1st IASTED international conference on communications, Internet, information technology, St. Thomas, Virgin Islands, USA (pp. 289–298).

  111. 111.

    Quagga routing suite (2009).http://www.quagga.net/.

  112. 112.

    Rak, J. (2010). k-penalty: a novel approach to find k-disjoint paths with differentiated path costs. IEEE Communications Letters, 14(4), 354–356.

  113. 113.

    Raven provisioning service (2009). http://raven.cs.arizona.edu/.

  114. 114.

    Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (2004). Report, Critical National Infrastructures.

  115. 115.

    Resilinets topology map viewer (2011). http://www.ittc.ku.edu/resilinets/maps/.

  116. 116.

    Richards, C. W. (2007). Map of the Month: Mainline Tonnage 1980/2005.

  117. 117.

    Rocketfuel (2008). An ISP topology mapping engine.

  118. 118.

    Rohrer, J. P., Jabbar, A., Perrins, E., & Sterbenz, J. P. G. (2008). Cross-layer architectural framework for highly-mobile multihop airborne telemetry networks. In Proceedings of the IEEE military communications conference (MILCOM), San Diego, CA, USA (pp. 1–9).

  119. 119.

    Rohrer, J. P., Jabbar, A., & Sterbenz, J. P. G. (2009). Path diversification: a multipath resilience mechanism. In Proceedings of the IEEE 7th international workshop on the design of reliable communication networks (DRCN), Washington, DC, USA (pp. 343–351).

  120. 120.

    Rohrer, J. P., Naidu, R., & Sterbenz, J. P. G. (2009). Multipath at the transport layer: an end-to-end resilience mechanism. In Proceedings of the IEEE/IFIP international workshop on reliable networks design and modeling (RNDM), St. Petersburg, Russia (pp. 1–7).

  121. 121.

    Rohrer, J. P., Çetinkaya, E. K., & Sterbenz, J. P. G. (2011). Progress and challenges in large-scale future Internet experimentation using the GpENI programmable testbed. In The 6th ACM international conference on future internet technologies (CFI), pp. 46–49.

  122. 122.

    Schaeffer-Filho, A., Smith, P., & Mauthe, A. (2011). Policy-driven network simulation: a resilience case study. In 26th ACM symposium on applied computing (SAC), Taichung, Taiwan.

  123. 123.

    Schneider, F. (1999). Trust in cyberspace. National Academies Press.

  124. 124.

    Schöller, M., Smith, P., Rohner, C., Karaliopoulos, M., Jabbar, A., Sterbenz, J., & Hutchison, D. (2010). On realising a strategy for resilience in opportunistic networks. In Future network and mobile summit (pp. 1–8).

  125. 125.

    Severe space weather events: understanding societal and economic impacts (2008). Workshop report, National Research Council.

  126. 126.

    Siganos, G., Faloutsos, M., Faloutsos, P., & Faloutsos, C. (2003). Power laws and the AS-level Internet topology. IEEE/ACM Transactions on Networking, 11(4), 514–524.

  127. 127.

    Smith, P., Hutchison, D., Banfield, M., & Leopold, H. (2006). On understanding normal protocol behaviour to monitor and mitigate the abnormal. In Proceedings of the IEEE/IST workshop on monitoring, attack detection and mitigation (MonAM), Tuebingen, Germany (pp. 105–107).

  128. 128.

    Smith, P., Schaeffer-Filho, A., Ali, A., Schöller, M., Kheir, N., Mauthe, A., & Hutchison, D. (2010). Strategies for network resilience: capitalising on policies. In B. Stiller & F. De Turck (Eds.), Lecture notes in computer science: Vol. 6155. Mechanisms for autonomous management of networks and services (pp. 118–122). Berlin/Heidelberg: Springer.

  129. 129.

    Spring, N., Mahajan, R., & Wetherall, D. (2004). Measuring ISP Topologies with Rocketfuel. IEEE/ACM Transactions on Networking, 12(1), 2–16.

  130. 130.

    Sprint network maps (2010). https://www.sprint.net/network_maps.php.

  131. 131.

    Sterbenz, J. P. G., & Hutchison, D. (2008). Resilinets: Multilevel resilient and survivable networking initiative wiki. http://wiki.ittc.ku.edu/resilinets.

  132. 132.

    Sterbenz, J. P. G., & Touch, J. D. (2001). High-speed networking: a systematic approach to high-bandwidth low-latency communication (1st edn.). New York: Wiley.

  133. 133.

    Sterbenz, J. P. G., Krishnan, R., Hain, R. R., Jackson, A. W., Levin, D., Ramanathan, R., & Zao, J. (2002). Survivable mobile wireless networks: issues, challenges, and research directions. In WiSE ’02: proceedings of the 3rd ACM workshop on wireless security (pp. 31–40). New York: ACM Press.

  134. 134.

    Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: strategies principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265. Special Issue on Resilient and Survivable Networks.

  135. 135.

    Sterbenz, J. P. G., Medhi, D., Ramamurthy, B., Scoglio, C., Hutchison, D., Plattner, B., Anjali, T., Scott, A., Buffington, C., Monaco, G. E., Gruenbacher, D., McMullen, R., Rohrer, J. P., Sherrell, J., Angu, P., Cherukuri, R., Qian, H., & Tare, N. (2010). The Great plains Environment for Network Innovation (GpENI): a programmable testbed for future internet architecture research. In Proceedings of the 6th international conference on testbeds and research infrastructures for the development of networks & communities (TridentCom), Berlin, Germany (pp. 428–441).

  136. 136.

    Strand, J., Chiu, A., & Tkach, R. (2001). Issues for routing in the optical layer. IEEE Communications Magazine, 39(2), 81–87.

  137. 137.

    Styron, H. C. (2001). CSX tunnel fire: Baltimore, MD (US Fire Administration Technical Report USFA-TR-140). Federal Emergency Management Administration, Emmitsburg, MD.

  138. 138.

    Sydney, A., Scoglio, C., Youssef, M., & Schumm, P. (2010). Characterising the robustness of complex networks. International Journal of Internet Technology and Secured Transactions, 2, 291–320.

  139. 139.

    Telecom Regulatory Authority of India: The Indian Telecom Services Performance Indicators April–June 2008. Quarterly press release, vol. 109 (2008).

  140. 140.

    The click modular router project (2009). http://read.cs.ucla.edu/click/.

  141. 141.

    The ns-3 network simulator (2009). http://www.nsnam.org.

  142. 142.

    Thedinger, T., Jabbar, A., & Sterbenz, J. P. G. (2010). Store and haul with repeated controlled flooding. In Second international IEEE workshop on mobile computing and networking technologies (WMCNT) (pp. 728–733).

  143. 143.

    Trivedi, K., Kim, D., Roy, A., & Medhi, D. (2009). Dependability and security models. In Proceedings of the international workshop of design of reliable communication networks (DRCN) (pp. 11–20). New York: IEEE Press.

  144. 144.

    T1A1.2 (1993). Working Group: network survivability performance (Technical Report T1A1.2/93-001R3). Alliance for Telecommunications Industry Solutions (ATIS).

  145. 145.

    T1A1.2 (2001). Working Group: enhanced network survivability performance (Technical Report T1.TR.68-2001). Alliance for Telecommunications Industry Solutions (ATIS).

  146. 146.

    T1A1.2 (2004). Working Group: reliability-related metrics and terminology for network elements in evolving communications networks. American National Standard for Telecommunications T1.TR.524-2004, Alliance for Telecommunications Industry Solutions (ATIS).

  147. 147.

    UK resilience homepage (2010). http://www.cabinetoffice.gov.uk/ukresilience.aspx.

  148. 148.

    Van Mieghem, P., Doerr, C., Wang, H., Hernandez, J., Hutchison, D., Karaliopoulos, M., & Kooij, R. (2010). A framework for computing topological network robustness (Tech. rep.). Delft University of Technology. http://www.nas.ewi.tudelft.nl/people/Piet/papers/RobustnessRmodel_TUDreport20101218.pdf.

  149. 149.

    VINI: A virtual network infrastructure (2009). http://www.vini-veritas.net/.

  150. 150.

    Wang, C., & Byers, J. W. (2007). Generating representative ISP topologies from first-principles. In Proceedings of the ACM international conference on measurement and modeling of computer systems (SIGMETRICS) (pp. 365–366). New York: ACM Press.

  151. 151.

    Waxman, B. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(9), 1617–1622.

  152. 152.

    Winick, J., & Jamin, S. (1996). Information security: computer hacker information available on the Internet (Tech. Rep. T-AIMD-96-108). United States General Accounting Office. http://www.fas.org/irp/gao/aimd-96-108.htm.

  153. 153.

    Winick, J., & Jamin, S. (2002). Inet-3.0: Internet topology generator (Tech. Rep. UM-CSE-TR-456-02). EECS, University of Michigan. http://topology.eecs.umich.edu/inet/inet-3.0.pdf.

  154. 154.

    XORP: Extensible open-source routing platform (2009). http://www.xorp.org/.

  155. 155.

    Yook, S., Jeong, H., & Barabasi, A. (2002). Modeling the Internet’s large-scale topology. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13,382–13,386.

  156. 156.

    Zegura, E., Calvert, K., & Bhattacharjee, S. (1996). How to model an internetwork. In Proceedings of the 15th annual joint conference of the IEEE computer societies (INFOCOM) (Vol. 2, pp. 594–602).

Download references

Author information

Correspondence to James P. G. Sterbenz.

Additional information

This research was supported in part by the National Science Foundation FIND (Future Internet Design) Program under grant CNS-0626918 (Postmodern Internet Architecture), by NSF grant CNS-1050226 (Multilayer Network Resilience Analysis and Experimentation on GENI), and the European Commission FIRE (Future Internet Research and Experimentation Programme) under grant FP7-224619 (ResumeNet).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sterbenz, J.P.G., Çetinkaya, E.K., Hameed, M.A. et al. Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommun Syst 52, 705–736 (2013). https://doi.org/10.1007/s11235-011-9573-6

Download citation

Keywords

  • Resilient survivable disruption-tolerant network
  • Dependability performability
  • Diverse topology generation
  • Network analysis experimentation
  • Ns-3 simulation methodology