Advertisement

Telecommunication Systems

, Volume 52, Issue 2, pp 705–736 | Cite as

Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation

Invited paper
  • James P. G. Sterbenz
  • Egemen K. Çetinkaya
  • Mahmood A. Hameed
  • Abdul Jabbar
  • Shi Qian
  • Justin P. Rohrer
Article

Abstract

As the Internet becomes increasingly important to all aspects of society, the consequences of disruption become increasingly severe. Thus it is critical to increase the resilience and survivability of future networks. We define resilience as the ability of the network to provide desired service even when challenged by attacks, large-scale disasters, and other failures. This paper describes a comprehensive methodology to evaluate network resilience using a combination of topology generation, analytical, simulation, and experimental emulation techniques with the goal of improving the resilience and survivability of the Future Internet.

Keywords

Resilient survivable disruption-tolerant network Dependability performability Diverse topology generation Network analysis experimentation Ns-3 simulation methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A roadmap for cybersecurity research (2009). Technical report, Department of Homeland Security (DHS). Google Scholar
  2. 2.
    Africa: Population Density (2000). Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Palisades, NY: Center for International Earth Science Information Network (CIESIN), Columbia University. Available at http://sedac.ciesin.columbia.edu/gpw.
  3. 3.
    Alderson, D., Doyle, J., Govindan, R., & Willinger, W. (2003). Toward an optimization-driven framework for designing and generating realistic Internet topologies. Computer Communication Review, 33(1), 41–46. CrossRefGoogle Scholar
  4. 4.
    Alderson, D., Li, L., Willinger, W., & Doyle, J. C. (2005). Understanding Internet topology: principles, models, and validation. IEEE/ACM Transactions on Networking, 13(6), 1205–1218. CrossRefGoogle Scholar
  5. 5.
    Antonopoulos, A. (1999). Metrication and performance analysis on resilience of ring-based transport network solutions. In GLOBECOM’99: global telecommunications conference (Vol. 2, pp. 1551–1555). Google Scholar
  6. 6.
    Avizienis, A. (1967). Design of fault-tolerant computers. AFIPS Conference Proceedings, 31, 733–743. Thompson Books 1967 fall joint computer conf. Google Scholar
  7. 7.
    Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33. CrossRefGoogle Scholar
  8. 8.
    Bacher, R., & Näf, U. (2003). Report on the blackout in Italy on 28 September 2003. (Report). Swiss Federal Office of Energy (SFOE). Google Scholar
  9. 9.
    Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512 http://www.sciencemag.org/cgi/content/abstract/286/5439/509. CrossRefGoogle Scholar
  10. 10.
    Bassiri, B., & Heydari, S. S. (2009). Network survivability in large-scale regional failure scenarios. In Proceedings of the 2nd Canadian conference on computer science and software engineering (C3S2E) (pp. 83–87). New York: ACM Press. Google Scholar
  11. 11.
    Beaudry, M. (1978). Performance-related reliability measures for computing systems. IEEE Transactions on Computers, 27, 540–547. CrossRefGoogle Scholar
  12. 12.
    Bhandari, R. (1998). Survivable networks: algorithms for diverse routing. Norwell: Kluwer Academic. Google Scholar
  13. 13.
    Bhattacharjee, B., Calvert, K., Griffioen, J., Spring, N., & Sterbenz, J. P. G. (2006). Postmodern internetwork architecture (Technical Report ITTC-FY2006-TR-45030-01). Information and Telecommunication Center, 2335 Irving Hill Road, Lawrence, KS 66045-7612. Google Scholar
  14. 14.
    Bouabene, G., Jelger, C., Tschudin, C., Schmid, S., Keller, A., & May, M. (2010). The autonomic network architecture (ANA). IEEE Journal on Selected Areas in Communications, 28(1), 4–14. CrossRefGoogle Scholar
  15. 15.
    CAIDA: Cooperative Association for Internet Data Analysis (caida) (2009). http://www.caida.org/home/.
  16. 16.
    Calvert, K., Doar, M., & Zegura, E. (1997). Modeling Internet topology. IEEE Communications Magazine, 35(6), 160–163. CrossRefGoogle Scholar
  17. 17.
    Calvert, K. L., Bhattacharjee, S., Zegura, E. W., & Sterbenz, J. P. G. (1998). Directions in active networks. IEEE Communications Magazine, 36(10), 72–78. CrossRefGoogle Scholar
  18. 18.
    Carlson, J. M., & Doyle, J. (1999). Highly optimized tolerance: a mechanism for power laws in designed systems. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60(2), 1412–1427. CrossRefGoogle Scholar
  19. 19.
    Center for International Earth Science Information Network (CIESIN) (2011). Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3): Population Density Grids. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University: http://sedac.ciesin.columbia.edu/gpw.
  20. 20.
    Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2010). A comprehensive framework to simulate network attacks and challenges. In Proceedings of the 2nd IEEE/IFIP international workshop on reliable networks design and modeling (RNDM), Moscow, Russia, pp. 538–544. Google Scholar
  21. 21.
    Çetinkaya, E. K., Broyles, D., Dandekar, A., Srinivasan, S., & Sterbenz, J. P. G. (2011). Modelling communication network challenges for future internet resilience, survivability, and disruption tolerance: a simulation-based approach. Telecommunication Systems (in this issue). Google Scholar
  22. 22.
    Cgal (2011). Computational Geometry Algorithms Library. http://www.cgal.org.
  23. 23.
    Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: laws generators, and algorithms. ACM Computing Surveys, 38(1), 2. CrossRefGoogle Scholar
  24. 24.
    Chen, Q., Chang, H., Govindan, R., & Jamin, S. (2002). The origin of power laws in Internet topologies revisited. In Proceedings of the 21st annual joint conference of the IEEE computer and communications societies (INFOCOM) (Vol. 2, pp. 608–617). Google Scholar
  25. 25.
    Cherukuri, R., Liu, X., Bavier, A., Sterbenz, J., & Medhi, D. (2011). Network virtualization in GpENI: framework, implementation & integration experience. In IEEE/IFIP ManFI, Dublin, Ireland, pp. 1216–1223. Google Scholar
  26. 26.
    Clark, D., Sollins, K., Wroclawski, J., Katabi, D., Kulik, J., Yang, X., Braden, R., Faber, T., Falk, A., Pingali, V., Handley, M., & Chiappa, N. (2003). New arch: future generation, Internet architecture (Technical report). DARPA, MIT, ISI. Google Scholar
  27. 27.
    Clark, D. D., Wroclawski, J., Sollins, K. R., & Braden, R. (2005). Tussle in cyberspace: defining tomorrow’s Internet. IEEE/ACM Transactions on Networking, 13(3), 462–475. CrossRefGoogle Scholar
  28. 28.
  29. 29.
  30. 30.
    Cowie, J. H., Ogielski, A. T., Premore, B., Smith, E. A., & Underwood, T. (2003). Impact of the 2003 blackouts on Internet communications (Preliminary Report). Renesys Corporation (updated March 1, 2004). Google Scholar
  31. 31.
    Cowie, J., Popescu, A., & Underwood, T. (2005). Impact of hurricane Katrina on Internet infrastructure (Report). Renesys Google Scholar
  32. 32.
    Davis, T., Rogers, H., & Shays, C. (2006). Others: a failure of initiative: the final report of the select bipartisan committee to investigate the preparation for and response to hurricane Katrina (Congressional Report H.Rpt. 109-377). US House of Representatives, Washington, DC. Google Scholar
  33. 33.
    Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., & Zambonelli, F. (2006). A survey of autonomic communications. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 223–259. CrossRefGoogle Scholar
  34. 34.
    Doerr, C., & Hernandez, J. M. (2010). A computational approach to multi-level analysis of network resilience. In Proceedings of the third international conference on dependability (DEPEND) (pp. 125–132). Google Scholar
  35. 35.
    Doyle, J. C., Alderson, D. L., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R., & Willinger, W. (2005). The “robust yet fragile” nature of the Internet. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14 497–14,502. CrossRefGoogle Scholar
  36. 36.
    Dynamic resource allocation via GMPLS optical network (2009). http://dragon.maxgigapop.net/.
  37. 37.
    Edwards, N. (1994). Building dependable distributed systems (Technical Report). APM.1144.00.02, ANSA. Google Scholar
  38. 38.
    Ellinas, G., & Stern, T. (1996). Automatic protection switching for link failures in optical networks with bi-directional links. In Proceedings of the global telecommunications conference (GLOBECOM) (Vol. 1, pp. 152–156). Google Scholar
  39. 39.
    Ellison, R. J., Fisher, D. A., Linger, R. C., Lipson, H. F., Longstaff, T., & Mead, N. R. (1999). Survivable network systems: an emerging discipline (Tech. Rep. CMU/SEI-97-TR-013). Software Engineering Institute, Carnegie Mellon University, PA. Google Scholar
  40. 40.
    Ellison, R., Fisher, D., Linger, R., Lipson, H., Longstaff, T., & Mead, N. (1997). Survivable network systems: an emerging discipline (Tech. Rep. CMU/SEI-97-TR-013). Software Engineering Institute. Carnegie Mellon University. Google Scholar
  41. 41.
    Emulab: Network emulation testbed (2009). http://www.emulab.net/.
  42. 42.
    Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61. Google Scholar
  43. 43.
  44. 44.
    Fabrikant, A., Koutsoupias, E., & Papadimitriou, C. (2002). Heuristically optimized trade-offs: a new paradigm for power laws in the internet. In Lecture notes in computer science (pp. 110–122). Berlin: Springer. Google Scholar
  45. 45.
    Fall, K. (2003). A delay-tolerant network architecture for challenged Internets. In SIGCOMM ’03: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (pp. 27–34). New York: ACM Press. CrossRefGoogle Scholar
  46. 46.
    Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the Internet topology. In SIGCOMM ’99: Proceedings of the conference on applications, technologies, architectures, and protocols for computer communication (pp. 251–262). New York: ACM Press. CrossRefGoogle Scholar
  47. 47.
    Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., & Zhang, L. (2001). IDMaps: a global Internet host distance estimation service. IEEE/ACM Transactions on Networking, 9(5), 525–540. CrossRefGoogle Scholar
  48. 48.
    Frank, H. (1974). Survivability analysis of command and control communications networks—part I. IEEE Transactions on Communications, 22(5), 589–595. CrossRefGoogle Scholar
  49. 49.
    Frank, H., & Frisch, I. (1970). Analysis and design of survivable networks. IEEE Transactions on Communication Technology, 18(5), 501–519. CrossRefGoogle Scholar
  50. 50.
    Fry, M., Fischer, M., Karaliopoulos, M., Smith, P., & Hutchison, D. (2010). Challenge identification for network resilience. In Proc. of the IEEE 6th EURO-NF conference on next generation internet (NGI) (pp. 1–8). CrossRefGoogle Scholar
  51. 51.
    Gan, Q., & Helvik, B. (2006). Dependability modelling and analysis of networks as taking routing and traffic into account. In NGI ’06: Proceedings of the conference on next generation Internet design and engineering. Google Scholar
  52. 52.
    Gay, F., & Ketelsen, M. (1979). Performance evaluation for gracefully degrading systems. In Proc. of the 9th annual int. symp. on fault tolerant computing (pp. 51–58). Google Scholar
  53. 53.
    GÉANT2 (2009). http://www.geant2.net/.
  54. 54.
    Goodman, S., & Lin, H. (2007). Toward a safer and more secure cyberspace. National Academies Press. Google Scholar
  55. 55.
    Grover, W. D. (2004). Mesh-based survivable networks. Upper Saddle River: Prentice Hall PTR Pearson. Google Scholar
  56. 56.
    Grover, W. D., & Stamatelakis, D. (1998). Cycle-oriented distributed preconfiguration: ring-like speed with mesh-like capacity for self-planning network restoration. In Proceeding of the IEEE international conference on communications (ICC’98), (Vol. 1, pp. 537–543). Google Scholar
  57. 57.
    Gush: GENI user shell (2009). http://gush.cs.williams.edu/trac/gush.
  58. 58.
    Haddadi, H., Rio, M., Iannaccone, G., Moore, A., & Mortier, R. (2008). Network topologies: inference, modeling, and generation. IEEE Communications Surveys and Tutorials, 10(2), 48–69. CrossRefGoogle Scholar
  59. 59.
    Hagin, A. A. (1994). Performability, reliability, and survivability of communication networks: system of methods and models for evaluation. In Proceedings of the 14th international conference on distributed computing systems (pp. 562–573). Google Scholar
  60. 60.
    Hameed, M. A., Jabbar, A., Çetinkaya, E. K., & Sterbenz, J. P. (2010). Deriving network topologies from real world constraints. In Proceedings of IEEE GLOBECOM workshop on complex and communication networks (CCNet) (pp. 415–419). Google Scholar
  61. 61.
    Hariri, S., Qu, G., Dharmagadda, T., Ramkishore, M., & Raghavendra, C. S. (2003). Impact analysis of faults and attacks in large-scale networks. IEEE Security & Privacy, 01(5), 49–54. CrossRefGoogle Scholar
  62. 62.
    Heegaard, P. E., & Trivedi, K. S. (2009). Network survivability modeling. Computer Networks, 53(8), 1215–1234. Performance Modeling of Computer Networks: Special Issue in Memory of Dr. Gunter Bolch. CrossRefGoogle Scholar
  63. 63.
    Huslende, R. (1981). A combined evaluation of performance and reliability for degradable systems. In Proceedings of the ACM conference on measurement and modeling of computer systems (SIGMETRICS) (pp. 157–164). New York: ACM Press. Google Scholar
  64. 64.
    Jabbar, A. (2010). A framework to quantify network resilience and survivability. Ph.D. thesis, The University of Kansas, Lawrence, KS. Google Scholar
  65. 65.
    Jabbar, A., Rohrer, J. P., Oberthaler, A., Çetinkaya, E. K., Frost, V., & Sterbenz, J. P. G. (2009). Performance comparison of weather disruption-tolerant cross-layer routing algorithms. In Proc. IEEE INFOCOM 2009. The 28th conference on computer communications (pp. 1143–1151). CrossRefGoogle Scholar
  66. 66.
    Jabbar, A., Shi, Q., Hameed, M., Çetinkaya, E. K., & Sterbenz, J. P. (2011). ResiliNets topology modelling. https://wiki.ittc.ku.edu/resilinets/Topology_Modelling.
  67. 67.
    Jabbar, A., Narra, H., & Sterbenz, J. P. G. (2011). An approach to quantifying resilience in mobile ad hoc networks. In Proceedings of the 8th IEEE international workshop on the design of reliable communication networks (DRCN). Google Scholar
  68. 68.
    Jackson, A. W., Sterbenz, J. P. G., Condell, M. N., & Hain, R. R. (2002). Active network monitoring and control: the SENCOMM architecture and implementation. In DARPA active networks conference and exposition (DANCE), (pp. 379–393). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  69. 69.
    Jamakovic, A., & Uhlig, S. (2007). Influence of the network structure on robustness. In IEEE international conference on networks (ICON) (pp. 278–283). Google Scholar
  70. 70.
    Kitamura, Y., Lee, Y., Sakiyama, R., & Okamura, K. (2007). Experience with restoration of Asia pacific network failures from Taiwan earthquake. IEICE Transactions on Communications, E90-B(11), 3095–3103. CrossRefGoogle Scholar
  71. 71.
    KMI Corporation (1999). North American fiberoptic long-haul routes planned and in place. Google Scholar
  72. 72.
    Knight, J. C., Strunk, E. A., & Sullivan, K. J. (2003). Towards a rigorous definition of information system survivability. In Proceedings of the DARPA information survivability conference and exposition DISCEX III, Washington, DC, pp. 78–89. CrossRefGoogle Scholar
  73. 73.
    Kuhn, D. (1997). Sources of failure in the public switched telephone network. Computer, 30(4), 31–36. CrossRefGoogle Scholar
  74. 74.
    Lakhina, A., Byers, J., Crovella, M., & Matta, I. (2003). On the geographic location of Internet resources. IEEE Journal on Selected Areas in Communications, 21(6), 934–948. CrossRefGoogle Scholar
  75. 75.
    Laprie, J. C. (1994). Dependability: basic concepts and terminology. Draft, IFIP Working Group 10.4—Dependable Computing and Fault Tolerance. Google Scholar
  76. 76.
    Laprie, J.-C. (2008). From dependability to resilience. In Proceedings of the 38th IEEE/IFIP international conference on dependable systems and networks (DSN). Google Scholar
  77. 77.
    Li, L., Alderson, D., Willinger, W., & Doyle, J. (2004). A first-principles approach to understanding the Internet’s router-level topology. Computer Communication Review, 34(4), 3–14. CrossRefGoogle Scholar
  78. 78.
    Liew, S., & Lu, K. (1992). A framework for network survivability characterization. In SUPERCOMM/ICC’92: proceedings of IEEE international conference on communications (ICC) (pp. 405–410). Google Scholar
  79. 79.
    Liew, S., & Lu, K. (1994). A framework for characterizing disaster-based network survivability. IEEE Journal on Selected Areas in Communications, 12(1), 52–58. CrossRefGoogle Scholar
  80. 80.
    Liscouski, B., & Elliot, W. J. (2004). Final report on the august 14, 2003 blackout in the United States and Canada: causes and recommendations (Tech. Rep.). U.S.–Canada Power System Outage Task Force. Google Scholar
  81. 81.
    Liu, Y., Mendiratta, V., & Trivedi, K. (2004). Survivability analysis of telephone access network. In Proceedings of the 15th international symposium on software reliability engineering (pp. 367–378). Washington: IEEE Computer Society. Google Scholar
  82. 82.
    Losq, J. (1977). Effects of failures on gracefully degradable systems. In Proc. of 7th fault-tolerant computing symposium (pp. 29–34). Google Scholar
  83. 83.
    Lyons, R., & Vanderkulk, W. (1962). The use of triple-modular redundancy to improve computer reliability. IBM Journal of Research and Development, 6(2), 200–209. CrossRefGoogle Scholar
  84. 84.
    Mahadevan, P., Krioukov, D., Fomenkov, M., Dimitropoulos, X., Claffy, K. C., & Vahdat, A. (2006). The Internet AS-level topology: three data sources and one definitive metric. Computer Communication Review, 36(1), 17–26. CrossRefGoogle Scholar
  85. 85.
    Mahmood, R. A. (2009). Simulating challenges to communication networks for evaluation of resilience. Master’s thesis, The University of Kansas, Lawrence, KS. Google Scholar
  86. 86.
  87. 87.
    Medhi, D., & Tipper, D. (2000). Multi-layered network survivability-models, analysis, architecture, framework and implementation: an overview. In Proceedings of the DARPA information survivability conference and exposition (DISCEX) (Vol. 1, pp. 173–186). CrossRefGoogle Scholar
  88. 88.
    Medina, A., Matta, I., & Byers, J. (2000). On the origin of power laws in Internet topologies. Computer Communication Review, 30(2), 18–28. CrossRefGoogle Scholar
  89. 89.
    Meyer, J. (1980). On evaluating the performability of degradable computing systems. IEEE Transactions on Computers, 100(29), 720–731. CrossRefGoogle Scholar
  90. 90.
    Meyer, J. F. (2009). Defining and evaluating resilience: a performability perspective. In International workshop on performability modeling of computer and communication systems (PMCCS). Google Scholar
  91. 91.
    Minden, G., Evans, J., Searl, L., DePardo, D., Petty, V., Rajbanshi, R., Newman, T., Chen, Q., Weidling, F., Guffey, J., Datla, D., Barker, B., Peck, M., Cordill, B., Wyglinski, A., & Agah, A. (2007). KUAR: a flexible software-defined radio development platform. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 428–439). CrossRefGoogle Scholar
  92. 92.
    Mohammad, A. J., Hutchison, D., & Sterbenz, J. P. G. (2006). Towards quantifying metrics for resilient and survivable networks. In Proceedings of the 14th IEEE international conference on network protocols (ICNP) (pp. 17–18). Google Scholar
  93. 93.
    Molisz, W. (2004). Survivability function-a measure of disaster-based routing performance. IEEE Journal on Selected Areas in Communications, 22(9), 1876–1883. CrossRefGoogle Scholar
  94. 94.
    Molisz, W., & Rak, J. (2006). End-to-end service survivability under attacks on networks. Journal of Telecommunications and Information Technology, 3, 19–26. Google Scholar
  95. 95.
    Molisz, W., & Rak, J. (2008). f-cycles—a new approach to providing fast service recovery at low backup capacity overhead. In 10th anniversary international conference on transparent optical networks (ICTON), (Vol. 3, pp. 59–62). Google Scholar
  96. 96.
    Molisz, W., & Rak, J. (2010). Impact of WDM network topology characteristics on the extent of failure losses. In 12th international conference on transparent optical networks (ICTON) (pp. 1–4). CrossRefGoogle Scholar
  97. 97.
    Moore, E., & Shannon, C. (1956). Reliable circuits using less reliable relays. Journal of the Franklin Institute, 262(3), 191–208. CrossRefGoogle Scholar
  98. 98.
    Motiwala, M., Elmore, M., Feamster, N., & Vempala, S. (2008). Path splicing. In Proceedings of the ACM SIGCOMM conference on data communication (pp. 27–38). New York: ACM Press. Google Scholar
  99. 99.
    Neumayer, S., & Modiano, E. (2010). Network reliability with geographically correlated failures. In Proc. of IEEE INFOCOM (pp. 1–9). CrossRefGoogle Scholar
  100. 100.
    Neumayer, S., Zussman, G., Cohen, R., & Modiano, E. (2009). Assessing the vulnerability of the fiber infrastructure to disasters. In Proc. of IEEE INFOCOM (pp. 1566–1574). Google Scholar
  101. 101.
    Ng, Y., & Avizienis, A. (1977). A reliability model for gracefully degrading and repairable fault-tolerant systems. In Proceedings of 7th international symposium on fault-tolerant computing (pp. 29–34). Los Alamitos: IEEE Computing Society Press. Google Scholar
  102. 102.
    Ng, T. S. E., & Zhang, H. (2001). Predicting Internet network distance with coordinates-based approaches. In INFOCOM (pp. 170–179). Google Scholar
  103. 103.
    Nicol, D. M., Sanders, W. H., & Trivedi, K. S. (2004). Model-based evaluation: from dependability to security. IEEE Transactions on Dependable and Secure Computing, 01(1), 48–65. CrossRefGoogle Scholar
  104. 104.
    Nussbaumer, J., Patel, B. V., Schaffa, F., & Sterbenz, J. P. G. (1995). Networking requirements for interactive video on demand. IEEE Journal on Selected Areas in Communications, 13, 779–787. CrossRefGoogle Scholar
  105. 105.
    Oppenheimer, D., Ganapathi, A., & Patterson, D. A. (2003). Why do Internet services fail, and what can be done about it. In Proc. of USENIX USITS (pp. 1–16). Google Scholar
  106. 106.
    Pierce, W. (1965). Failure-tolerant computer design. San Diego: Academic Press. Google Scholar
  107. 107.
    PlanetLab (2009). http://www.planet-lab.org/.
  108. 108.
    Protecting America’s infrastructures (1997). Report, President’s Commission on Critical Infrastructure Protection. Google Scholar
  109. 109.
    ProtoGENI wiki (2010). http://www.protogeni.net/trac/protogeni.
  110. 110.
    Qu, G., Jayaprakash, R., Hariri, S., & Raghavendra, C. (2002). A framework for network vulnerability analysis. In CT ’02: Proceedings of the 1st IASTED international conference on communications, Internet, information technology, St. Thomas, Virgin Islands, USA (pp. 289–298). Google Scholar
  111. 111.
    Quagga routing suite (2009).http://www.quagga.net/.
  112. 112.
    Rak, J. (2010). k-penalty: a novel approach to find k-disjoint paths with differentiated path costs. IEEE Communications Letters, 14(4), 354–356. CrossRefGoogle Scholar
  113. 113.
    Raven provisioning service (2009). http://raven.cs.arizona.edu/.
  114. 114.
    Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack (2004). Report, Critical National Infrastructures. Google Scholar
  115. 115.
    Resilinets topology map viewer (2011). http://www.ittc.ku.edu/resilinets/maps/.
  116. 116.
    Richards, C. W. (2007). Map of the Month: Mainline Tonnage 1980/2005. Google Scholar
  117. 117.
    Rocketfuel (2008). An ISP topology mapping engine. Google Scholar
  118. 118.
    Rohrer, J. P., Jabbar, A., Perrins, E., & Sterbenz, J. P. G. (2008). Cross-layer architectural framework for highly-mobile multihop airborne telemetry networks. In Proceedings of the IEEE military communications conference (MILCOM), San Diego, CA, USA (pp. 1–9). Google Scholar
  119. 119.
    Rohrer, J. P., Jabbar, A., & Sterbenz, J. P. G. (2009). Path diversification: a multipath resilience mechanism. In Proceedings of the IEEE 7th international workshop on the design of reliable communication networks (DRCN), Washington, DC, USA (pp. 343–351). Google Scholar
  120. 120.
    Rohrer, J. P., Naidu, R., & Sterbenz, J. P. G. (2009). Multipath at the transport layer: an end-to-end resilience mechanism. In Proceedings of the IEEE/IFIP international workshop on reliable networks design and modeling (RNDM), St. Petersburg, Russia (pp. 1–7). Google Scholar
  121. 121.
    Rohrer, J. P., Çetinkaya, E. K., & Sterbenz, J. P. G. (2011). Progress and challenges in large-scale future Internet experimentation using the GpENI programmable testbed. In The 6th ACM international conference on future internet technologies (CFI), pp. 46–49. CrossRefGoogle Scholar
  122. 122.
    Schaeffer-Filho, A., Smith, P., & Mauthe, A. (2011). Policy-driven network simulation: a resilience case study. In 26th ACM symposium on applied computing (SAC), Taichung, Taiwan. Google Scholar
  123. 123.
    Schneider, F. (1999). Trust in cyberspace. National Academies Press. Google Scholar
  124. 124.
    Schöller, M., Smith, P., Rohner, C., Karaliopoulos, M., Jabbar, A., Sterbenz, J., & Hutchison, D. (2010). On realising a strategy for resilience in opportunistic networks. In Future network and mobile summit (pp. 1–8). Google Scholar
  125. 125.
    Severe space weather events: understanding societal and economic impacts (2008). Workshop report, National Research Council. Google Scholar
  126. 126.
    Siganos, G., Faloutsos, M., Faloutsos, P., & Faloutsos, C. (2003). Power laws and the AS-level Internet topology. IEEE/ACM Transactions on Networking, 11(4), 514–524. CrossRefGoogle Scholar
  127. 127.
    Smith, P., Hutchison, D., Banfield, M., & Leopold, H. (2006). On understanding normal protocol behaviour to monitor and mitigate the abnormal. In Proceedings of the IEEE/IST workshop on monitoring, attack detection and mitigation (MonAM), Tuebingen, Germany (pp. 105–107). Google Scholar
  128. 128.
    Smith, P., Schaeffer-Filho, A., Ali, A., Schöller, M., Kheir, N., Mauthe, A., & Hutchison, D. (2010). Strategies for network resilience: capitalising on policies. In B. Stiller & F. De Turck (Eds.), Lecture notes in computer science: Vol. 6155. Mechanisms for autonomous management of networks and services (pp. 118–122). Berlin/Heidelberg: Springer. CrossRefGoogle Scholar
  129. 129.
    Spring, N., Mahajan, R., & Wetherall, D. (2004). Measuring ISP Topologies with Rocketfuel. IEEE/ACM Transactions on Networking, 12(1), 2–16. CrossRefGoogle Scholar
  130. 130.
    Sprint network maps (2010). https://www.sprint.net/network_maps.php.
  131. 131.
    Sterbenz, J. P. G., & Hutchison, D. (2008). Resilinets: Multilevel resilient and survivable networking initiative wiki. http://wiki.ittc.ku.edu/resilinets.
  132. 132.
    Sterbenz, J. P. G., & Touch, J. D. (2001). High-speed networking: a systematic approach to high-bandwidth low-latency communication (1st edn.). New York: Wiley. Google Scholar
  133. 133.
    Sterbenz, J. P. G., Krishnan, R., Hain, R. R., Jackson, A. W., Levin, D., Ramanathan, R., & Zao, J. (2002). Survivable mobile wireless networks: issues, challenges, and research directions. In WiSE ’02: proceedings of the 3rd ACM workshop on wireless security (pp. 31–40). New York: ACM Press. CrossRefGoogle Scholar
  134. 134.
    Sterbenz, J. P. G., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: strategies principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265. Special Issue on Resilient and Survivable Networks. CrossRefGoogle Scholar
  135. 135.
    Sterbenz, J. P. G., Medhi, D., Ramamurthy, B., Scoglio, C., Hutchison, D., Plattner, B., Anjali, T., Scott, A., Buffington, C., Monaco, G. E., Gruenbacher, D., McMullen, R., Rohrer, J. P., Sherrell, J., Angu, P., Cherukuri, R., Qian, H., & Tare, N. (2010). The Great plains Environment for Network Innovation (GpENI): a programmable testbed for future internet architecture research. In Proceedings of the 6th international conference on testbeds and research infrastructures for the development of networks & communities (TridentCom), Berlin, Germany (pp. 428–441). Google Scholar
  136. 136.
    Strand, J., Chiu, A., & Tkach, R. (2001). Issues for routing in the optical layer. IEEE Communications Magazine, 39(2), 81–87. CrossRefGoogle Scholar
  137. 137.
    Styron, H. C. (2001). CSX tunnel fire: Baltimore, MD (US Fire Administration Technical Report USFA-TR-140). Federal Emergency Management Administration, Emmitsburg, MD. Google Scholar
  138. 138.
    Sydney, A., Scoglio, C., Youssef, M., & Schumm, P. (2010). Characterising the robustness of complex networks. International Journal of Internet Technology and Secured Transactions, 2, 291–320. CrossRefGoogle Scholar
  139. 139.
    Telecom Regulatory Authority of India: The Indian Telecom Services Performance Indicators April–June 2008. Quarterly press release, vol. 109 (2008). Google Scholar
  140. 140.
    The click modular router project (2009). http://read.cs.ucla.edu/click/.
  141. 141.
    The ns-3 network simulator (2009). http://www.nsnam.org.
  142. 142.
    Thedinger, T., Jabbar, A., & Sterbenz, J. P. G. (2010). Store and haul with repeated controlled flooding. In Second international IEEE workshop on mobile computing and networking technologies (WMCNT) (pp. 728–733). Google Scholar
  143. 143.
    Trivedi, K., Kim, D., Roy, A., & Medhi, D. (2009). Dependability and security models. In Proceedings of the international workshop of design of reliable communication networks (DRCN) (pp. 11–20). New York: IEEE Press. Google Scholar
  144. 144.
    T1A1.2 (1993). Working Group: network survivability performance (Technical Report T1A1.2/93-001R3). Alliance for Telecommunications Industry Solutions (ATIS). Google Scholar
  145. 145.
    T1A1.2 (2001). Working Group: enhanced network survivability performance (Technical Report T1.TR.68-2001). Alliance for Telecommunications Industry Solutions (ATIS). Google Scholar
  146. 146.
    T1A1.2 (2004). Working Group: reliability-related metrics and terminology for network elements in evolving communications networks. American National Standard for Telecommunications T1.TR.524-2004, Alliance for Telecommunications Industry Solutions (ATIS). Google Scholar
  147. 147.
    UK resilience homepage (2010). http://www.cabinetoffice.gov.uk/ukresilience.aspx.
  148. 148.
    Van Mieghem, P., Doerr, C., Wang, H., Hernandez, J., Hutchison, D., Karaliopoulos, M., & Kooij, R. (2010). A framework for computing topological network robustness (Tech. rep.). Delft University of Technology. http://www.nas.ewi.tudelft.nl/people/Piet/papers/RobustnessRmodel_TUDreport20101218.pdf.
  149. 149.
    VINI: A virtual network infrastructure (2009). http://www.vini-veritas.net/.
  150. 150.
    Wang, C., & Byers, J. W. (2007). Generating representative ISP topologies from first-principles. In Proceedings of the ACM international conference on measurement and modeling of computer systems (SIGMETRICS) (pp. 365–366). New York: ACM Press. Google Scholar
  151. 151.
    Waxman, B. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 6(9), 1617–1622. CrossRefGoogle Scholar
  152. 152.
    Winick, J., & Jamin, S. (1996). Information security: computer hacker information available on the Internet (Tech. Rep. T-AIMD-96-108). United States General Accounting Office. http://www.fas.org/irp/gao/aimd-96-108.htm.
  153. 153.
    Winick, J., & Jamin, S. (2002). Inet-3.0: Internet topology generator (Tech. Rep. UM-CSE-TR-456-02). EECS, University of Michigan. http://topology.eecs.umich.edu/inet/inet-3.0.pdf.
  154. 154.
    XORP: Extensible open-source routing platform (2009). http://www.xorp.org/.
  155. 155.
    Yook, S., Jeong, H., & Barabasi, A. (2002). Modeling the Internet’s large-scale topology. Proceedings of the National Academy of Sciences of the United States of America, 99(21), 13,382–13,386. CrossRefGoogle Scholar
  156. 156.
    Zegura, E., Calvert, K., & Bhattacharjee, S. (1996). How to model an internetwork. In Proceedings of the 15th annual joint conference of the IEEE computer societies (INFOCOM) (Vol. 2, pp. 594–602). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • James P. G. Sterbenz
    • 1
    • 2
  • Egemen K. Çetinkaya
    • 1
  • Mahmood A. Hameed
    • 1
  • Abdul Jabbar
    • 1
  • Shi Qian
    • 1
  • Justin P. Rohrer
    • 1
  1. 1.Electrical Engineering and Computer Science, Information and Telecommunication Technology CenterThe University of KansasLawrenceUSA
  2. 2.Computing Department, InfoLab21Lancaster UniversityLancasterUK

Personalised recommendations