Advertisement

Telecommunication Systems

, Volume 52, Issue 4, pp 2459–2474 | Cite as

Collision Free Mobility Adaptive (CFMA) MAC for wireless sensor networks

  • Bilal Muhammad Khan
  • Falah H. Ali
Article

Abstract

In this paper we propose high throughput collision free, mobility adaptive and energy efficient medium access protocol (MAC) called Collision Free Mobility Adaptive (CFMA) for wireless sensor networks. CFMA ensures that transmissions incur no collisions, and allows nodes to undergo sleep mode whenever they are not transmitting or receiving. It uses delay allocation scheme based on traffic priority at each node and avoids allocating same backoff delay for more than one node unless they are in separate clusters. It also allows nodes to determine when they can switch to sleep mode during operation. CFMA for mobile nodes provides fast association between the mobile node and the cluster coordinator. The proposed MAC performs well in both static and mobile scenarios, which shows its significance over existing MAC protocols proposed for mobile applications. The performance of CFMA is evaluated through extensive simulation, analysis and comparison with other mobility aware MAC protocols. The results show that CFMA outperforms significantly the existing CSMA/CA, Sensor Mac (S-MAC), Mobile MAC (MOB-MAC), Adaptive Mobility MAC (AM-MAC), Mobility Sensor MAC (MS-MAC), Mobility aware Delay sensitive MAC (MD-MAC) and Dynamic Sensor MAC (DS-MAC) protocols including throughput, latency and energy consumption.

Keywords

Collision Free MAC Mobility Adaptive MAC Mobile wireless sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., & Sastry, S. S. (2003). Distributed control applications within sensor networks. Proceedings of the IEEE, 91(8), 1235–1246. Special Issue on Sensor Networks Applications. CrossRefGoogle Scholar
  2. 2.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. In Proc. of the 9th international conference on architectural support for programming languages and operating systems, Cambridge, MA, Nov. (pp. 93–104). Google Scholar
  3. 3.
    Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., & Estrin, D. (2004). Habitat monitoring with sensor networks. Communications of the ACM, 47(6), 34–40. CrossRefGoogle Scholar
  4. 4.
    Hanada, E., Hoshino, Y., & Kudou, T. (2004). Safe introduction of in-hospital wireless LAN. In Proc. int. Medinfo, Sep. (pp. 1426–1429). Google Scholar
  5. 5.
    Lee, J. H., & Hashimoto, H. (2001). Controlling mobile robots in distributed intelligent sensor network. IEEE Transactions on Industrial Electronics, 50(5), 890–902. CrossRefGoogle Scholar
  6. 6.
    Ray, S., Starobinski, D., Trachtenberg, A., & Ungrangsi, R. (2004). Robust location detection with sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1016–1025. CrossRefGoogle Scholar
  7. 7.
    IEEE 802 Working Group (2006). Standard for part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPAN), ANSI/IEEE std. 802.15.4, Sep. Google Scholar
  8. 8.
    Misic, J., Fung, C. J., & Misic, V. B. (2006). On node population in a multilevel 802.15.4 sensor network. In Proc. GLOBECOM, Nov. (pp. 1–6). Google Scholar
  9. 9.
    Chlamtac, I., & Lerner, A. (1987). Fair algorithms for maximal link activation in multihop radio networks. IEEE Transactions on Communications, 35(7), 739–746. CrossRefGoogle Scholar
  10. 10.
    Cidon, I., & Sidi, M. (1989). Distributed assignment algorithms for multihop packet radio networks. IEEE Transactions on Computers, 38(10), 1236–1361. CrossRefGoogle Scholar
  11. 11.
    Ephremides, A., & Truong, T. (1990). Scheduling broadcasts in multihop radio networks. IEEE Transactions on Communications, 38(4), 456–460. CrossRefGoogle Scholar
  12. 12.
    Kleirock, L., & Tobagi, F. (1975). Packet switching in radio channels, part 1: carrier sense multiple-access models and their throughput delay characteristics. IEEE Transactions on Communications, 23(12), 1400–1416. CrossRefGoogle Scholar
  13. 13.
    Kleirock, L., & Tobagi, F. (1975). Packet switching in radio channels, part 2: hidden-terminal problem in carrier sense multiple access and the busytone solution. IEEE Transactions on Communications, 23(12), 1417–1433. CrossRefGoogle Scholar
  14. 14.
    Lam, S. (1980). A carrier sense multiple access protocol for local networks. Computer Networks, 4, 21–32. Google Scholar
  15. 15.
    Bao, L., & Garcia-Luna-Aceves, J. J. (2001). A new approach to channel access scheduling for Ad Hoc networks. In Seventh annual international conference on mobile computing and networking (pp. 210–221). Google Scholar
  16. 16.
    Chlamtac, I., & Farago, A. (1994). Making transmission schedules immune to topology changes in multi-hop packet radio networks. IEEE/ACM Transactions on Networking, 2(1), 23–29. CrossRefGoogle Scholar
  17. 17.
    Ju, J., & Li, V. (1998). An optimal topology-transparent scheduling method in multihop packet radio networks. IEEE/ACM Transactions on Networking, 6(3), 298–306. CrossRefGoogle Scholar
  18. 18.
    Ramanathan, S. (1999). A unified framework and algorithm for channel assignment in wireless networks. Wireless Networks, 5(2), 81–94. CrossRefGoogle Scholar
  19. 19.
    Sohrabi, K., & Pottie, G. (1999). Performance of a novel self-organization protocol for wireless ad hoc sensor networks. In IEEE 50th, vehicular technology conference (pp. 1222–1226). Google Scholar
  20. 20.
    IEEE (1999). Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications, ANSI/IEEE Standard 802.11, 1999. Google Scholar
  21. 21.
    Singh, S., & Raghavendra, C. (1998). PAMAS, power aware multi-access protocol with signaling for ad hoc networks. Computer Communication Review, 28(3), 5–26. CrossRefGoogle Scholar
  22. 22.
    Woo, A., & Culler, D. (2001). A transmission control scheme for media access in sensor networks. In ACM/IEEE international conference on mobile computing and networking (Mobicom) 2001 (pp. 221–235). Google Scholar
  23. 23.
    Tseng, Y. C., Hsu, C.-S., & Hsieh, T.-Y. (2002). Power-saving protocols for IEEE 802.11-based multi-hop ad hoc networks. In Proc. of the IEEE Infocom, Nov. (Vol. 1, pp. 200–209). Google Scholar
  24. 24.
    Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In IEEE INFOCOM 2002 (pp. 1567–1576). Google Scholar
  25. 25.
    Haas, Z. J., & Deng, J. (2002). Dual busy tone multiple access (DBTMA)—a multiple access control scheme for ad hoc networks. IEEE Transactions on Communications, 50(6), 975–985. CrossRefGoogle Scholar
  26. 26.
    Chen, H. H., & Oksman, J. (1996). Detective collision free protocol for distributed DS/SSMA wireless networks using coding sensing and chip rate division techniques. IEE Proceedings Communications, 43, 101–120. Google Scholar
  27. 27.
    Chen, H. H., & Tea, W. T. (2004). Performance of hierarchy schedule sensing protocol for distributed ad-hoc CDMA networks under multiple packet collision and capture effect. IEEE/ACM Transactions on Networking, 12, 1036–1048. CrossRefGoogle Scholar
  28. 28.
    Ci, S., Guizani, M., Chen, H. H., & Sharif, H. (2006). Self-regulating network utilization in mobile ad-hoc wireless networks. IEEE Transactions on Vehicular Technology, 55(4), 1302–1310. CrossRefGoogle Scholar
  29. 29.
    Xiao, Y., & Guizani, M. (2006). Optimal paging load balance with total delay constraint in macrocell-microcell hierarchical cellular networks. IEEE Transactions on Vehicular Technology, 55(5), 2202–2209. Google Scholar
  30. 30.
    Chao, C.-M., & Lee, Y.-W. (2010). A quorum-based energy-saving MAC protocol design for wireless sensor networks. IEEE Transactions on Vehicular Technology, 59(2), 813–822. CrossRefGoogle Scholar
  31. 31.
    Lee, H., Hong, J., Yang, S., Jang, I., & Yoon, H. (2010). A pseudo-random asynchronous duty cycle MAC protocol in wireless sensor networks. IEEE Communications Letters, 14(2), 136–138. CrossRefGoogle Scholar
  32. 32.
    Hong, J., Jang, I., Lee, H., Yang, S., & Yoon, H. (2010). MRMAC: medium reservation MAC protocol for reducing end-to-end delay and energy consumption in wireless sensor networks. IEEE Communications Letters, 14(7), 614–616. CrossRefGoogle Scholar
  33. 33.
    Bachir, A., Heusse, M., Duda, A., & Leung, K. K. (2009). Preamble sampling MAC protocols with persistent receivers in wireless sensor networks. IEEE Transactions on Wireless Communications, 8(3), 1091–1095. CrossRefGoogle Scholar
  34. 34.
    Shiann, T. S., Yun, Y. S., & Wei, T. L. (2009). CSMA/CF protocol for IEEE 802.15.4 WPANs. IEEE Transactions on Vehicular Technology, 58(3), 1501–1516. CrossRefGoogle Scholar
  35. 35.
    Raviraj, P., Sharif, H., Hempel, M., & Ci, S. (2005). MOBMAC—an energy efficient and low latency MAC for mobile wireless sensor networks. In IEEE Systems Communications, 14–17 Aug. (pp. 370–375). Google Scholar
  36. 36.
    Choi, S.-C., Lee, J.-W., & Kim, Y. (2008). An adaptive mobility-supporting MAC protocol for mobile sensor networks. In IEEE vehicular technology conference (pp. 168–172). Google Scholar
  37. 37.
    Pham, H., & Jha, S. (2004). An adaptive mobility-aware MAC protocol for sensor networks (MS-MAC). In Proceedings of the IEEE international conference on mobile ad-hoc and sensor systems (MASS) (pp. 214–226). Google Scholar
  38. 38.
    Lin, P., Qiao, C., & Wang, X. (2004). Medium access control with a dynamic duty cycle for sensor networks. In Proceedings of the IEEE wireless communications and networking conference (WCNC) (Vol. 3, pp. 1534–1539). Google Scholar
  39. 39.
    Hameed, S. A., Shaaban, E. M., Faheem, H. M., & Ghoniemy, M. S. (2009). Mobility-aware MAC protocol for delay sensitive wireless sensor networks. In IEEE ultra modern telecommunications & workshops, Oct. (pp. 1–8). Google Scholar
  40. 40.
    Bettstetter, C., Resta, G., & Santi, P. (2003). The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(3), 257–269. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Communication research group, School of Engineering and DesignUniversity of SussexBrightonUK

Personalised recommendations