Advertisement

Telecommunication Systems

, Volume 52, Issue 4, pp 2437–2458 | Cite as

Improving the medium access in highly mobile Wireless Sensor Networks

  • Romain Kuntz
  • Julien Montavont
  • Thomas Noël
Article

Abstract

Mobility has recently been contemplated as a way to improve sensing coverage and connectivity in unattended Wireless Sensor Networks. However, accessing the medium in such dynamic topologies raises multiple problems on mobile sensors. Synchronization issues between fixed and mobile nodes may prevent the latter from successfully sending data to their peers. Mobile nodes can also suffer from long medium access delays when traveling through congested areas. In these circumstances, the expected next hop may not be valid anymore when the data packet is actually sent on the medium. In this article, we present the X-Machiavel protocol which aims at addressing these issues. By allowing mobile nodes to take possession of a reserved medium, it guarantees that they will be able to send their data in congested networks within a small delay, while keeping the overhead low for the fixed sensors. Our proposal also relieves the mobile sensors from maintaining a list of next hops by relying on the fixed sensors infrastructure for the routing operations. We demonstrate by simulation the benefits of our proposal compared to the X-MAC protocol on which our contribution relies. The principles behind X-Machiavel can be combined with other preamble sampling protocols in order to improve their efficiency in mobile environments.

Keywords

Wireless Sensor Networks Medium Access Control Mobility X-MAC X-Machiavel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, G.-S., Hong, S. G., Miluzzo, E., Campbell, A. T., & Cuomo, F. (2006). Funneling-MAC: a localized, sink-oriented MAC for boosting fidelity in sensor networks. In SenSys ’06: 4th international conference on embedded networked sensor systems, October (pp. 293–306). New York: ACM Press. CrossRefGoogle Scholar
  2. 2.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349. CrossRefGoogle Scholar
  3. 3.
    Ali, M., & Uzmi, Z. A. (2006). Medium access control with mobility adaptive mechanisms for wireless sensor networks. International Journal of Sensor Networks, 1(3/4), 134–142. CrossRefGoogle Scholar
  4. 4.
    Allred, J., Hasan, A. B., Panichsakul, S., Pisano, W., Gray, P., Huang, J., Han, R., Lawrence, D., & Mohseni, K. (2007). Sensorflock: an airborne wireless sensor network of micro-air vehicles. In SenSys ’07: 5th international conference on embedded networked sensor systems, November (pp. 117–129). New York: ACM Press. CrossRefGoogle Scholar
  5. 5.
    Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: a survey. Ad Hoc Networks, 7(3), 537–568. CrossRefGoogle Scholar
  6. 6.
    Arisha, K. A., Youssef, M. A., & Younis, M. F. (2002). Energy-aware TDMA-based MAC for sensor networks. In IMPACCT ’02: workshop on integrated management of power aware communications, computing and networking, May. New York: IEEE Press. Google Scholar
  7. 7.
    Bachir, A., Dohler, M., Watteyne, T., & Leung, K. K. (2010). MAC essentials for wireless sensor networks. IEEE Communications Surveys and Tutorials, 12(2), 222–248. CrossRefGoogle Scholar
  8. 8.
    Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., & Parlange, M. (2008). SensorScope: Out-of-the-box environmental monitoring. In IPSN ’08: 7th international conference on information processing in sensor networks, April (pp. 332–343). New York: ACM/IEEE Press. Google Scholar
  9. 9.
    Buettner, M., Yee, G. V., Anderson, E., & Han, R. (2006). X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In SenSys ’06: 4th international conference on embedded networked sensor systems, October (pp. 307–320). New York: ACM Press. CrossRefGoogle Scholar
  10. 10.
    Chelius, G. et al. (2011). WSNet, an event-driven simulator for large scale WSNs. http://wsnet.gforge.inria.fr.
  11. 11.
    Crossbow Technology Inc. (2011). The TelosB wireless sensor board. http://www.xbow.com.
  12. 12.
    Culler, D. et al. (2011). TinyOS, the operating system for wireless embedded sensor networks. http://www.tinyos.net.
  13. 13.
    Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., & Sukhatme, G. S. (2005). Robomote: enabling mobility in sensor networks. In IPSN ’05: 4th international symposium on information processing in sensor networks, April (pp. 404–409). New York: ACM Press. Google Scholar
  14. 14.
    Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine, 44(4), 115–121. CrossRefGoogle Scholar
  15. 15.
    El-Hoiydi, A. (2002). ALOHA with preamble sampling for sporadic traffic in ad hoc wireless sensor networks. In ICC ’02: international conference on communications, April (Vol. 5, pp. 3418–3423. New York: IEEE Press. Google Scholar
  16. 16.
    El-Hoiydi, A., Decotignie, J.-D., Enz, C., & Roux, E. L. (2003). Poster abstract: wisemac, an ultra low power MAC protocol for the wisenet wireless sensor network. In SenSys ’03: 1st international conference on embedded networked sensor systems, November (pp. 302–303). New York: ACM Press. CrossRefGoogle Scholar
  17. 17.
    Flury, R., & Wattenhofer, R. (2006). MLS: an efficient location service for mobile ad hoc networks. In MobiHoc ’06: 7th international symposium on mobile ad hoc networking and computing, May (pp. 226–237). New York: ACM Press. CrossRefGoogle Scholar
  18. 18.
    Halkes, G. P., & Langendoen, K. G. (2007). Crankshaft: an energy-efficient MAC protocol for dense wireless sensor networks. In EWSN ’07: 4th European conference on wireless sensor networks, Blackwell, January. Google Scholar
  19. 19.
    Heurtefeux, K., & Valois, F. (2009). Distributed localization protocol for routing in a noisy wireless sensor network. In MSN ’09: 5th international conference on mobile ad-hoc and sensor networks (pp. 223–230). New York: IEEE Press. CrossRefGoogle Scholar
  20. 20.
    Hill, J., & Culler, D. (2002). Mica: a wireless platform for deeply embedded networks. IEEE MICRO, 22(6), 12–24. CrossRefGoogle Scholar
  21. 21.
    IEEE Computer Society (2006). IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs). IEEE Std 802.15.4-2006 (Revision of IEEE Std 802.15.4-2003), September (pp. 1–305). Google Scholar
  22. 22.
    Kuntz, R., & Noël, T. (2009). Machiavel: accessing the medium in mobile and dense WSN. In PIMRC ’09: international symposium on personal, indoor and mobile radio communications, September (pp. 1–5). New York: IEEE Press. Google Scholar
  23. 23.
    Lee, W., Datta, A., & Cardell-Oliver, R. (2006). FlexiMAC: a flexible TDMA-based MAC protocol for fault-tolerant and energy-efficient wireless sensor networks. In ICON ’06. 14th international conference on networks, September (Vol. 2, pp. 1–6). New York: IEEE Press. CrossRefGoogle Scholar
  24. 24.
    Leguay, J., Lopez-Ramos, M., Jean-Marie, K., & Conan, V. (2008). An efficient service oriented architecture for heterogeneous and dynamic wireless sensor networks. In SensApp ’08: 3rd international workshop on practical issues in building sensor network applications, October. New York: IEEE Press. Google Scholar
  25. 25.
    Li, J., & Lazarou, G. Y. (2004). A bit-map-assisted energy-efficient MAC scheme for wireless sensor networks. In IPSN ’04: 3rd international symposium on information processing in sensor networks, April (pp. 55–60). New York: ACM Press. CrossRefGoogle Scholar
  26. 26.
    Pei, G., & Chien, C. (2001). Low power TDMA in large wireless sensor networks. In MILCOM ’01: military communications conference, October (Vol. 1, pp. 347–351). New York: IEEE Press. Google Scholar
  27. 27.
    Pham, H., & Jha, S. (2004). Addressing mobility in wireless sensor media access protocol. In ISSNIP ’04: intelligent sensors, sensor networks and information processing conference, December (pp. 113–118). Google Scholar
  28. 28.
    Pister, K. S. J., & Doherty, L. (2008). TSMP: time synchronized mesh protocol. In DSN ’08: international symposium on distributed sensor networks, November (pp. 391–398). New York: IEEE/IFIP Press. Google Scholar
  29. 29.
    Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In SenSys ’04: 2nd international conference on embedded networked sensor systems, November (pp. 95–107). New York: ACM Press. CrossRefGoogle Scholar
  30. 30.
    Raja, A., & Su, X. (2008). A mobility adaptive hybrid protocol for wireless sensor networks. In CCNC ’08: 5th consumer communications and networking conference, January (pp. 692–696). New York: IEEE Press. CrossRefGoogle Scholar
  31. 31.
    Rajendran, V., Garcia-Luna-Aveces, J., & Obraczka, K. (2005). Energy-efficient, application-aware medium access for sensor networks. In MASS ’05: 2nd international conference on mobile ad-hoc and sensor systems, November (pp. 630–637). New York: IEEE Press. Google Scholar
  32. 32.
    Rhee, I., Warrier, A., Aia, M., & Min, J. (2005). Z-MAC: a hybrid MAC for wireless sensor networks. In SenSys ’05: 3rd international conference on embedded networked sensor systems, November (pp. 90–101). New York: ACM Press. CrossRefGoogle Scholar
  33. 33.
    Sanchez, E. R., Chaudet, C., & Montrucchio, B. (2009). An energy consumption model of variable preamble sampling mac protocols for wireless sensor networks. In PIMRC ’09: international symposium on personal, indoor and mobile radio communications, Tokyo, Japan, September. New York: IEEE Press. Google Scholar
  34. 34.
    Senslab consortium (2011). Senslab, the very large scale open wireless sensor network testbed. http://www.senslab.info.
  35. 35.
    Shnayder, V., rong Chen, B., Lorincz, K., Fulford-Jones, T. R. F., & Welsh, M. (2005). Sensor networks for medical care (Technical Report TR-08-05). Division of Engineering and Applied Sciences, Harvard University. Google Scholar
  36. 36.
    Sohrabi, K., Gao, J., Ailawadhi, V., & Pottie, G. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27. CrossRefGoogle Scholar
  37. 37.
    Sundararaman, B., Buy, U., & Kshemkalyani, A. D. (2005). Clock synchronization for wireless sensor networks: a survey. Ad Hoc Networks, 3(3), 281–323. CrossRefGoogle Scholar
  38. 38.
    Texas Instruments (2011). Chipcon CC1100 low-power RF transceiver. http://www.ti.com/lit/gpn/cc1100.
  39. 39.
    Thorstensen, B., Syversen, T., Bjørnvold, T.-A., & Walseth, T. (2004). Electronic shepherd—a low-cost, low-bandwidth, wireless network system. In MobiSys ’04: international conference on mobile systems, applications, and services, June (pp. 245–255). New York: ACM Press. CrossRefGoogle Scholar
  40. 40.
    van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In SenSys ’03: 1st international conference on embedded networked sensor systems, November (pp. 171–180). New York: ACM Press. Google Scholar
  41. 41.
    van Hoesel, L., & Havinga, P. (2004). Poster abstract: A TDMA-based MAC protocol for WSNs. In SenSys ’04: 2nd international conference on embedded networked sensor systems, November. New York: ACM Press. Google Scholar
  42. 42.
    Yahya, B., & Ben-Othman, J. (2009). An adaptive mobility aware and energy efficient MAC protocol for wireless sensor networks. In ISCC ’09: IEEE symposium on computers and communications, July (pp. 15–21). New York: IEEE Press. CrossRefGoogle Scholar
  43. 43.
    Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506. CrossRefGoogle Scholar
  44. 44.
    Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling. In SenSys ’06: proceedings of the 4th international conference on embedded networked sensor systems, October (pp. 321–334). New York: ACM Press. CrossRefGoogle Scholar
  45. 45.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330. CrossRefGoogle Scholar
  46. 46.
    Zen, K., Habibi, D., Rassau, A., & Ahmad, I. (2008). Performance evaluation of IEEE 802.15.4 for mobile sensor networks. In WOCN ’08: 5th international conference on wireless and optical communications networks May (pp. 1–5). IFIP. Google Scholar
  47. 47.
    Zhou, G., Huang, C., Yan, T., He, T., Stankovic, J. A., & Abdelzaher, T. F. (2006). MMSN: Multi-frequency media access control for wireless sensor networks. In INFOCOM ’06: international conference on computer communications, April (pp. 1–13). New York: IEEE Press. Google Scholar

Copyright information

© +Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Image Sciences, Computer Sciences and Remote Sensing Laboratory, (LSIIT UMR CNRS 7005)University of StrasbourgStrasbourgFrance

Personalised recommendations