Telecommunication Systems

, Volume 52, Issue 2, pp 623–632 | Cite as

Stock provisioning strategies for QoS at the interdomain level

  • Dominique Barth
  • Loubna EchabbiEmail author
  • Chahinez Hamlaoui


Some interdomain traffic needs specific guarantees in terms of QoS. Hence, an end-to-end QoS provisioning should be maintained by transit Autonomous Systems and final destinations proposing the services. We propose a distributed stock model following a reverse cascade negotiation in order to enable QoS provisioning at the interdomain level. We analyze different stock strategies on a simple network topology using game theory framework and validate our results by simulation.


Interdomain services QoS provisionning Nash equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, D., Echabbi, L., Hamlaoui, C., & Vial, S. (2005). An economic and algorithmic model for qos provisioning bgp interdomain network. In EuroNGI workshop on QoS and traffic control. Google Scholar
  2. 2.
    Roughgarden, T., & Tardos, E. (2000). How bad is selfish routing? In IEEE symposium on foundations of computer science (pp. 93–102). [Online]. Available: Google Scholar
  3. 3.
    Correa, J. R., Schulz, A. S., & Stier-Moses, N. E. (2004). Selfish routing in capacitated networks (pp. 961–976). Nov. 2004. [Online]. Available:
  4. 4.
    Czumaj, A., Krysta, P., & Vocking, B. (2002). Selfish traffic allocation for server farms. In 34th ACM symp. on theory of computing (STOC ’02). [Online]. Available:
  5. 5.
    Czumaj, A., & Vocking, B. (2002). Tight bounds for worst-case equilibria. [Online]. Available:
  6. 6.
    Koutsoupias, E., & Papadimitriou, C. (1999). Worst-case equilibria. In Lecture notes in computer science (Vol. 1563, pp. 404–413). Berlin: Springer. [Online]. Available: Google Scholar
  7. 7.
    Roughgarden, T. (2002). The price of anarchy is independent of the network topology. In 34th ACM symposium on the theory of computing. [Online]. Available:
  8. 8.
    Roughgarden, T. (2001). Stackelberg scheduling strategies. In ACM symposium on theory of computing (pp. 104–113). [Online]. Available: Google Scholar
  9. 9.
    Suri, S., Toth, C. D., & Zhou, Y. (2004). Selfish load balancing and atomic congestion games. In SPAA ’04: Proceedings of the sixteenth annual ACM symposium on parallelism in algorithms and architectures (pp. 188–195). New York: ACM Press. CrossRefGoogle Scholar
  10. 10.
    Cristallo, G., & Jacquenet, C. An approach to inter-domain traffic engineering. [Online]. Available:
  11. 11.
    Solé-Pareta, J., Smirnov, M., Mieghem, P. V., Domingo-Pascual, J., Monteiro, E., Reichl, P., Stiller, B., & Gibbens, R. J. (Eds.) (2004). Quality of service in the emerging networking panorama: Fifth international workshop on quality of future Internet services, QofIS 2004. Lecture notes in computer science (Vol. 3266). Berlin: Springer. Google Scholar
  12. 12.
    Norden, S., & Turner, J. Inter-domain qos routing algorithms. [Online]. Available:
  13. 13.
    Howarth, M., Flegas, P., Pavlou, G., Wang, N., Trimintzios, P., Griffin, D., Griem, J., Boucadair, M., Morand, P., Asgari, H., & Georgatsos, P. (2005). Provisioning for inter-domain quality of service: the mescal approach. In IEEE Communications Magazine (pp. 253–278). Google Scholar
  14. 14.
    Hayrapetyan, A., Tardos, E., & Wexler, T. (2005). A network pricing game for selfish traffic. In PODC’05: Proceedings of the twenty-fourth annual ACM symposium on principles of distributed computing (pp. 284–291). New York: ACM Press. Google Scholar
  15. 15.
    Kelly, F., Maulloo, A., & Tan, D. (1998). Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49. [Online]. Available:
  16. 16.
    Shu, J., & Varaiya, P. (2003). Pricing network services. [Online]. Available:
  17. 17.
    Alpcan, T., & Basar, T. (2003). A utility-based congestion control scheme for Internet-style networks with delay. [Online]. Available:
  18. 18.
    Barth, D., Mautor, T., & Monteiro, D. V. (2009). Impact of alliances on end-to-end qos satisfaction in an interdomain network. In ICC (pp. 1–6). Google Scholar
  19. 19.
    Georgatsos, P., Spencer, J., Griffin, D., Damilatis, T., Asgari, H., Griem, J., Pavlou, G., & Morand, P. (2004). Provider-level service agreements for inter-domain qos delivery. In QofIS (pp. 368–377). Google Scholar
  20. 20.
    A. M. (2006). Using repeated games to design incentive-based routing systems. In 25th IEEE INFOCOM. Google Scholar
  21. 21.
    A. M., & Wroclawski, J. (2004). On the benefits and feasibility of incentive based routing infrastructure. In ACM SIGCOMM’04 workshop (PINS). Google Scholar
  22. 22.
    Feigenbaum, J., Papadimitriou, C., Sami, R., & Shenker, S. (2002). A bgp-based mechanism for lowest-cost routing. In ACM symposium on principles of distributed computing. [Online]. Available:
  23. 23.
    La, R., & Anantharam, V. (2002). Optimal routing control: Repeated game approach. In IEEE transactions on automatic control. [Online]. Available:
  24. 24.
    V. A. (2001). The omnet++ discret event simulation system. In European simulation multiconference. Google Scholar
  25. 25.
    Barth, D., Echabbi, L., & Hamlaoui, C. (2008). Optimal transit prices negotiation: The distributed learning perspective. Journal of Universal Computer Science, 14, 745–768. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dominique Barth
    • 1
  • Loubna Echabbi
    • 2
    Email author
  • Chahinez Hamlaoui
    • 3
  1. 1.PRiSMUniversité de VersaillesVersaillesFrance
  2. 2.INPTMadinat Al IrfaneRabatMorocco
  3. 3.Orange Labs (France Telecom, R&D)Issy Les Moulineaux Cedex 9France

Personalised recommendations