Telecommunication Systems

, Volume 52, Issue 4, pp 1931–1944 | Cite as

Experiments on MIMO-OFDM system combined with adaptive beamforming based on IEEE 802.16e WMAN standard



This paper presents field experiments on a Multi-Input Multi-Output (MIMO) system that combines Adaptive Beamforming (ABF) and Spatial Multiplexing (SM) procedures. The combination of SM signal processing with ABF is applied to WiBro, the South Korean Orthogonal Frequency Division Multiplexing (OFDM) system that follows the IEEE 802.16e standard. The field experimental results show that ABF-MIMO OFDM system outperforms a simple MIMO OFDM system by 2 dB (1.5 dB) in the signal to noise ratio (SNR) for 16-QAM (64-QAM) under low correlated fading channel and 4 dB (2.5 dB) in the SNR for 16-QAM (64-QAM) under highly correlated fading channel, respectively, at the frame error rate (FER) of 1%. Details on the implementation of ABF-MIMO OFDM system is also presented in this paper. Through the system implementation and its field experimental results, we verify that the combination of MIMO OFDM system with ABF provides improved performance over a simple MIMO OFDM system in real propagation channel environment and, in particular, it is more effective in highly correlated fading channel.


MIMO Adaptive beamforming (ABF) OFDM IEEE 802.16e WiBro 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tarokh, V., Shshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communications: performance criterion and code construction. IEEE Transactions on Information Theory, 44, 744–765. CrossRefGoogle Scholar
  2. 2.
    Hollanti, C., Lahtonen, J., Ranto, K., Vehkalahti, R., & Viterbo, E. (2008). On the algebraic structure of the Silver code. IEEE Inform. Theory Worksh., Porto, Portugal, May 2008. Google Scholar
  3. 3.
    Yao, H., & Wornell, G. W. (2003). Achieving the full MIMO diversity-multiplexing frontier with rotation-based space-time codes. In Proceed. Allerton conf. commun. control comp., Monticello, IL, Oct. 2003. Google Scholar
  4. 4.
    Belfiore, J.-C., Rekaya, G., & Viterbo, E. (2005). The Golden code: A 2×2 full-rate space-time code with nonvanishing determinants. IEEE Transactions on Information Theory, 51(4), 1432–1436. CrossRefGoogle Scholar
  5. 5.
    Tirkkonen, O., & Hottinen, A. (2002). Square-matrix embeddable space-time block codes for complex signal constellations. IEEE Transactions on Information Theory, 48(2), 385–395. CrossRefGoogle Scholar
  6. 6.
    Paredes, J. M., Gershman, A. B., & Gharavi-Alkhansari, M. (2008). A new full-rate full-diversity space-time block code with nonvanishing determinants and simpli_ed maximum-likelihood decoding. IEEE Transactions on Signal Processing, 56(6), 2461–2469. CrossRefGoogle Scholar
  7. 7.
    Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335. CrossRefGoogle Scholar
  8. 8.
    Raleigh, G. G., & Cioffi, J. M. (1998). Spatio-temporal coding for wireless communications. IEEE Transactions on Communications, 46(3), 357–366. CrossRefGoogle Scholar
  9. 9.
    IEEE P802.16e/D12. Part 16: Air interface for fixed and mobile broadband wireless access systems. IEEE, Oct. 2005. Google Scholar
  10. 10.
    Alex, S. P., & Jalloul, L. M. A. (2008). Performance evaluation of mimo in IEEE 802.16e/WiMAX. IEEE Journal of Selected Topics in Signal Processing, 2(2), 181–190. CrossRefGoogle Scholar
  11. 11.
    Stuber, G. L., Barry, J. R., McLaughlin, S. W., Ye, L., Ingram, M. A., & Pratt, T. G. (2004). Broadband MIMO-OFDM wireless communications. IEEE Proceedings, 92, 271–294. CrossRefGoogle Scholar
  12. 12.
    Sampath, H., Talwar, S., Tellado, J., Erceg, V., & Paulraj, A. J. (2002). A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results. IEEE Communications Magazine, 40, 143–149. CrossRefGoogle Scholar
  13. 13.
    Bolcskei, H. (2006). MIMO-OFDM wireless systems: basics, perspectives, and challenges. IEEE Wireless Communications, 13, 31–37. CrossRefGoogle Scholar
  14. 14.
    Narasimhan, R. (2003). Spatial multiplexing with transmit antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51, 2829–2838. CrossRefGoogle Scholar
  15. 15.
    Bolcskei, H., Borgmann, M., & Paulraj, A. J. (2002). Performance of space-frequency coded broadband OFDM under real-world propagation conditions. In Proc. Eur. conf. signal process (pp. 413–416). Google Scholar
  16. 16.
    Lee, W. C., & Choi, S. (2005). Adaptive beamforming algorithm based on eigen-space method for smart antennas. IEEE Communications Letters, 9(10), 888–890. CrossRefGoogle Scholar
  17. 17.
    Haene, S., Perels, D., & Burg, A. (2008). A real-time 4-stream MIMO-OFDM transceiver: system design, FPGA implementation, and characterization. IEEE Journal on Selected Areas in Communications, 26(6). Google Scholar
  18. 18.
    Borkowski, D., Brühl, L., Degen, C., Keusgen, W., Alirezaei, G., Geschewski, F., Oikonomopoulos, C., & Rembold, B. (2006). SABA: a testbed for a real-time MIMO system. EURASIP Journal on Applied Signal Processing 4, 1–15. Google Scholar
  19. 19.
    Irmer, R., Mayer, H. P., Weber, A., Braun, V., Schmidt, M., Ohm, M., Ahr, N., Zoch, A., Jandura, C., Marsch, P., & Fettweis, G. (2007). Multisite field trial for LTE and advanced concepts. IEEE Communications Magazine, 47, 92–98. CrossRefGoogle Scholar
  20. 20.
    Tenorio, S., Exadaktylos, K., McWilliams, B., & Le, Y. P. (2010). Mobile broadband field network performance with HSPA+. In 2010 European Wireless Conference (EW) (pp. 269–273). CrossRefGoogle Scholar
  21. 21.
    Yu, H., Song, K., Ryu, K., Kim, Y., Min, S., & Lee, S. (2006). Design and FPGA implementation of MIMO-OFDM based WLAN systems. In IEEE vehicular technology conference 2006 (vol. 3, pp. 1333–1338). CrossRefGoogle Scholar
  22. 22.
    Lim, G. B., Cimini, L. J., & Greenstein, L. J. (2005). Analysis and results for H-MIMO—a hybrid of spatial multiplexing and adaptive beamforming. In IEEE MILCOM 2005 (vol. 2, pp. 1187–1192). Google Scholar
  23. 23.
    Kim, I., Lee, K., & Chun, J. (2007). A MIMO antenna structure that combines transmit beamforming and spatial multiplexing. IEEE Transactions on Wireless Communications, 6(3), 775–779. CrossRefGoogle Scholar
  24. 24.
    Choi, S., & Yun, D. (1997). Design of adaptive antenna array for tracking the source of maximum power and its application to CDMA mobile communications. IEEE Transactions on Antennas and Propagation, 45, 1393–1404. CrossRefGoogle Scholar
  25. 25.
    Choi, S., & Shim, D. (2000). A novel adaptive beamforming algorithm for a smart antenna system in a CDMA mobile communication environment. IEEE Transactions on Vehicular Technology, 49(5), 1793–1806. CrossRefGoogle Scholar
  26. 26.
    Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). VBLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. In Proc. IEEE ISSSE’98, Pisa, Italy (pp. 295–300). Google Scholar
  27. 27.
    Thomas, T. A., Hillery, W. J., Kepler, J., & Desai, V. (2009). Estimating statistical eigen-beamforming gains using spatial channel correlation. In IEEE international conference on communications, 2009. ICC ’09, 14–18 June 2009 (pp. 1–5). CrossRefGoogle Scholar
  28. 28.
    Rangaraj, G. V., Jalihal, D., & Giridhar, K. (2005). Exploiting multipath diversity in multiple antenna OFDM systems with spatially correlated channels. IEEE Transactions on Vehicular Technology, 54(4), 1372–1378. CrossRefGoogle Scholar
  29. 29.
    Rec. ITU-R M.1225 (1998). Guidelines for evaluation of radio Transmission Technologies for IMT-2000, ITU-R. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mobile R&D LaboratoryKorea Telecom (KT)Seocho-Gu, SeoulKorea
  2. 2.School of Electrical and Computer EngineeringHanyang UniversitySeongdong-Gu, SeoulKorea

Personalised recommendations