Advertisement

Telecommunication Systems

, Volume 52, Issue 2, pp 375–385 | Cite as

Multi-Radio Cooperative ARQ in wireless cellular networks: a MAC layer perspective

  • Jesus Alonso-ZarateEmail author
  • Elli Kartsakli
  • Marcos Katz
  • Luis Alonso
  • Christos Verikoukis
Article

Abstract

Multi-Radio Cooperative Automatic Retransmission Request (MC-ARQ) schemes are introduced in this paper within the context of hybrid networks combining long-range and short-range communications. Since the number of wireless devices is incessantly increasing, it is frequently possible to establish a spontaneous cooperative cluster in the close proximity of any wireless device. These devices forming the cluster are connected to both a cellular-based network such as WiMAX, 3G, or LTE and a short-range network based on technologies such as WLAN, Zigbee, Bluetooh, or UWB, among other possibilities. The main idea behind the proposed MC-ARQ scheme is that, upon transmission error through the cellular interface, retransmission can be requested from the wireless grid surrounding the destination device using the short-range interface instead of the primary cellular link. Therefore, besides the cooperative diversity attained with C-ARQ schemes, the traffic load in the cellular interface is reduced benefiting thus a high number of users and reducing both energy consumption and interference. The Persistent Relay Carrier Sensing Medium Access (PRCSMA) protocol is presented as an example of solution for the MAC layer in this emerging new topic.

Keywords

Hybrid networks Wireless grid Cooperative ARQ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cover, T. M., & Gamal, A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572. CrossRefGoogle Scholar
  2. 2.
    Sendonaris, A., Erkip, E., & Aazhang, B. (2003). Station cooperation diversity—Part I: system description. IEEE Transactions on Communications, 51(11), 1927–1938. CrossRefGoogle Scholar
  3. 3.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12). Google Scholar
  4. 4.
    Fitzek, F. H. P., & Katz, M. D. (2006). Cooperation in wireless networks: principles and applications. Berlin: Springer. CrossRefGoogle Scholar
  5. 5.
    Fitzek, F. H. P., Katz, M., & Zhang, Q. (2006). Cellular controlled short-range communication for cooperative P2P networking. In Wireless Research Forum (WWRF) 17, Heidelberg, Germany, Nov. 2006 (Vol. WG 5). Google Scholar
  6. 6.
    Zimmermann, E., Herhold, P., & Fettweis, G. (2004). The impact of cooperation on diversity-exploiting protocols. In Proc. of the 59th IEEE vehicular technology conference. Google Scholar
  7. 7.
    Alonso-Zarate, J., Kartsakli, E., Verikoukis, C., & Alonso, L. (2008). Persistent RCSMA: a MAC protocol for a distributed cooperative ARQ scheme in wireless networks. EURASIP Journal on Advanced Signal Processing, 2008, 817401. Special Issue on Wireless Cooperative Networks. CrossRefGoogle Scholar
  8. 8.
    Alonso-Zarate, J., Alonso, L., & Verikoukis, Ch. (2009). Performance analysis of a persistent relay carrier sensing multiple access protocol. IEEE Transactions on Wireless Communications, 8(12). Google Scholar
  9. 9.
    IEEE, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std. 802.-11-99, Aug. 1999. Google Scholar
  10. 10.
    IEEE, Part 15.4: Wireless MAC and PHY layer specifications for low-rate wireless personal area networks. IEEE Std. 802.15.4-2006, 2006. Google Scholar
  11. 11.
    Liu, P., Tao, Z., & Panwar, S. (2007). CoopMAC: a cooperative MAC for wireless LANs. IEEE Journal on Selected Areas on Communications, 25(2). Google Scholar
  12. 12.
    Korakis, T., Natayanan, S., Bagri, A., & Panwar, S. (2006). Implementing a cooperative MAC protocol for wireless LAN. In Proc. of the IEEE international conference on communications (Vol. 10, pp. 4805–4810), ICC’06, June 2006. Google Scholar
  13. 13.
    Tao, Z., Korakis, T., Slutskiy, Y., Panwar, S., & Tassiulas, L. (2007). Cooperation and directionality: a coop-directional MAC for wireless ad hoc networks. In Proc. of the WiOpt. Google Scholar
  14. 14.
    Shankar, S., Chou, C., & Ghosh, M. (2005). Cooperative communication MAC (CMAC)—a new MAC protocol for next generation wireless LANs. In Proc. of the IEEE international conference on wireless networks, communications and mobile computing. Google Scholar
  15. 15.
    Wang, X., & Yang, C. (2005). A MAC protocol supporting cooperative diversity for distributed wireless ad hoc networks. In Proc. of the IEEE international symposium on PIMRC, Berlin, Germany, September 2005. Google Scholar
  16. 16.
    Azgin, A., Altunbasak, Y., & Alrebig, G. (2005). Cooperative MAC and routing protocols for wireless ad hoc networks. In Proc. of the IEEE Globecom. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jesus Alonso-Zarate
    • 1
    Email author
  • Elli Kartsakli
    • 2
  • Marcos Katz
    • 3
  • Luis Alonso
    • 2
  • Christos Verikoukis
    • 1
  1. 1.Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)Castelldefels, BarcelonaSpain
  2. 2.Universitat Politecnica de Catalunya (UPC)Castelldefels, BarcelonaSpain
  3. 3.Center for Wireless CommunicationsUniversity of OuluOuluFinland

Personalised recommendations