Telecommunication Systems

, Volume 51, Issue 4, pp 273–282 | Cite as

Optimal mapping of virtual networks with hidden hops

  • Juan Felipe Botero
  • Xavier Hesselbach
  • Andreas Fischer
  • Hermann de Meer


Network virtualization has emerged as a solution for the Internet inability to address the required challenges caused by the lack of coordination among Internet service providers for the deployment of new services. The allocation of resources is one of the main problems in network virtualization, mainly in the mapping of virtual nodes and links to specific substrate nodes and paths, also known as the virtual network embedding problem. This paper proposes an algorithm based on optimization theory, to map the virtual links and nodes requiring a specific demand, looking for the maximization of the spare bandwidth and spare CPU in the substrate network, taking into account the CPU demanded by the hidden hops when a virtual link is mapped. The components of the virtual networks (nodes and links) that do not ask for an specific demand are then allocated following a fairness criteria.


Network virtualization Virtual network embedding Virtual network mapping Optimization theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows. Englewood Cliffs: Prentice Hall. Google Scholar
  2. 2.
    Berl, A., Fischer, A., & de Meer, H. (2009). Using system virtualization to create virtualized networks. In Workshops der Wissenschaftlichen Konferenz Kommunikation in Verteilten Systemen (WowKiVS2009), Kassel, Germany, March 2009, vol. 17, EASST. Google Scholar
  3. 3.
    Chowdhury, N. M. M. K. (2009). Network virtualization: state of the art and research challenges. IEEE Communications Magazine, 47(7), 20–26. CrossRefGoogle Scholar
  4. 4.
    Chowdhury, N. M. M. K., Rahman, M. R., & Boutaba, R. (2009). Virtual network embedding with coordinated node and link mapping. In Proc. IEEE INFOCOM, IEEE Infocom, April 2009. Google Scholar
  5. 5.
    Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on Computing, 28(2), 652–673. CrossRefGoogle Scholar
  6. 6.
    Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman. Google Scholar
  7. 7.
    Hesselbach, X., & Fabregat, R. (2006). The impact over the packets sequence at the output interface in load balancing strategies. In International conference on transparent optical networks (vol. 3, pp. 263–266). CrossRefGoogle Scholar
  8. 8.
    Kent, S., & Seo, K. (2005). Security architecture for the Internet protocol, December 2005, RFC 4301. Google Scholar
  9. 9.
    Kleinberg, J. M. (1996). Approximation algorithms for disjoint paths problems. PhD thesis, Massachusetts Institute of Technology. Google Scholar
  10. 10.
    Lu, J., & Turner, J. (2006). Efficient mapping of virtual networks onto a shared substrate. Technical Report WUCSE-2006-35, Washington University. Google Scholar
  11. 11.
    Papadimitriou, P., Maennel, O., Greenhalgh, A., Feldmann, A., & Mathy, L. (2009). Implementing network virtualization for a future internet. In 20th ITC specialist seminar, Hoi An, Vietnam, May 2009. Google Scholar
  12. 12.
    Peterson, L., Shenker, S., & Turner, J., et al. (2005). Overcoming the internet impasse through virtualization. IEEE Transactions on Computers, 38(4), 34–41. Google Scholar
  13. 13.
    Steinmetz, R., & Wehrle, K. (2005). In Peer-to-peer systems and applications. Lecture notes in computer science, Secaucus, NJ, USA, 2005. New York: Springer. CrossRefGoogle Scholar
  14. 14.
    Tutschku, K., Zinner, T., Nakao, A., & Tran-Gia, P. (2009). Network virtualization: implementation steps towards the future internet. In Proc. of the workshop on overlay and network virtualization at KiVS, Kassel, Germany, March 2009. Google Scholar
  15. 15.
    Walkowiak, K. (2006). New algorithms for the unsplittable flow problem. In Lecture notes in computer science: vol. 3981 (pp. 1101–1110). Berlin: Springer. Google Scholar
  16. 16.
    Yu, M., Yi, Y., Rexford, J., & Chiang, M. (2008). Rethinking virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Computer Communication Review, 38(2), 17–29. CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., & Ammar, M. (2006). Algorithms for assigning substrate network resources to virtual network components. In Proc. IEEE INFOCOM, April 2006 (pp. 2812–2823). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Juan Felipe Botero
    • 1
  • Xavier Hesselbach
    • 1
  • Andreas Fischer
    • 2
  • Hermann de Meer
    • 2
  1. 1.BarcelonaSpain
  2. 2.PassauGermany

Personalised recommendations