Telecommunication Systems

, Volume 51, Issue 2–3, pp 115–123 | Cite as

An efficient group key management protocol using code for key calculation: CKC

  • Melisa Hajyvahabzadeh
  • Elina Eidkhani
  • Seyedeh Anahita Mortazavi
  • Alireza Nemaney Pour


This paper presents a new group key management protocol, CKC (Code for Key Calculation) for secure IP multicast. In this protocol which is based on logical key hierarchy, only the group key needs to be sent to new member at join. Then, using the group key current members and the new member calculate the necessary keys by node codes and one-way hash function. A node code is a random number assigned to each node to help users calculate necessary keys. Again, at leave server just sends the new group key to the remaining members. By this key, members calculate necessary keys using node codes and one-way hash function. The security of the keys is based on one-wayness of hash function. The results show that CKC reduces computational and communication overhead, and message size largely at join without increasing them at leave.


Secure multicast Group key management Logical key hierarchy Member discovery list 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jiang, B., & Hu, X. (2008). A survey of group key management. In 2008 international conference on computer science and software engineering (Vol. 3, pp. 994–1002), Dec. 2008. doi:10.1109/CSSE.2008.1282. CrossRefGoogle Scholar
  2. 2.
    Wallner, D., Harder, E., & Agee, R. (1999). Key management for multicast: issues and architectures. National Security Agency, RFC2627. Google Scholar
  3. 3.
    McGrew, D. A., & Sherman, A. T. (2003). Key establishment in large dynamic groups using one-way function trees. IEEE Transactions on Software Engineering, 29(5), 444–458. doi:10.1109/TSE.2003.1199073. CrossRefGoogle Scholar
  4. 4.
    Je, D., Seo, S., Park, Y., & Lee, J. (2010). Computation-and-storage-efficient key tree management protocol for secure multicast communications. Computer Communications, 33(2), 136–148. doi:10.1016/j.comcom.2009.08.007. CrossRefGoogle Scholar
  5. 5.
    He, Z., & Li, Y. (2008). Dynamic key management in a user hierarchy. In 2nd international conference on anti-counterfeiting, security and identification, ASID 2008 (pp. 298–300), Aug. 2008. doi:10.1109/IWASID.2008.4688404. Google Scholar
  6. 6.
    Kwak, D., Lee, S., & Kim, J. (2006). An efficient LKH tree balancing algorithm for group key management. IEEE Communications Letters, 10(3), 222–224. doi:10.1109/LCOMM.2006.1603391. CrossRefGoogle Scholar
  7. 7.
    Lu, R., Lin, X., Ho, P., Shen, X., & Cao, Z. (2008). A new dynamic group key management scheme with low rekeying cost. In Wireless communications and networking conference, WCNC 2008 (pp. 3243–3248), April 2008. New York: IEEE Press. doi:10.1109/WCNC.2008.566. CrossRefGoogle Scholar
  8. 8.
    Nemaney Pour, A., Kumekawa, K., Kato, T., & Itoh, S. (2007). A hierarchical group key management scheme for secure multicast increasing efficiency of key distribution in leave operation. Computer Networks, 51(17), 4727–4743. doi:10.1016/j.comnet.2007.07.007. CrossRefGoogle Scholar
  9. 9.
    Lin, J., Lai, F., & Lee, H. (2005). Efficient group key management protocol with one-way key derivation. In Proceedings of the IEEE conference on local computer networks 30th anniversary (LCN’5) (pp. 336–343), Nov. 2005. doi:10.1109/LCN.2005.61. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Melisa Hajyvahabzadeh
    • 1
  • Elina Eidkhani
    • 1
  • Seyedeh Anahita Mortazavi
    • 1
  • Alireza Nemaney Pour
    • 1
  1. 1.Dept. of Information Technology Engineering, School of Science and EngineeringSharif University of Technology, International CampusKish IslandIran

Personalised recommendations