Telecommunication Systems

, Volume 49, Issue 2, pp 239–254 | Cite as

Image error concealment and quality access control based on data hiding and cryptography

  • Amit Phadikar
  • Santi P. Maity
  • Claude DelphaEmail author


This paper proposes a data hiding scheme that integrates the dual purpose of error concealment and quality access control of digital image(s) in a single platform. The objective is achieved through the extraction of some important information from the original image itself followed by embedding the same in the host data as watermark which in turn increases sufficient redundancy in the transmitted image. The data embedding is done by modulating integer wavelet coefficients using quantization index modulation (QIM). The watermarked integer wavelet coefficients are then encoded using convolution coding at high code rate. Before data embedding, the important information (watermark) is also encoded with convolution coding and is encrypted using chaotic logistic mapping. The necessary information in the form of the secret key (K) is further encrypted using a public key (P) cryptology for its secret transmission to the receiver. The user who has the knowledge of the secret key (K) can decrypt the hidden information for the concealment purpose, while the users having different partial knowledge of the key (K) enjoy relative qualities of the images by partial recovery of the damaged regions. The simulation results have shown the validity of the claim. The performance of the proposed scheme is also tested in Rayleigh-fading wireless channel and compared with the few other methods.


Error concealment Access control Data hiding QIM Cryptography Convolution coding Viterbi decoding Lifting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Y., Wenger, S., Wen, J., & Katsaggelos, A. K. (2000). Error resilient video coding technique. IEEE Signal Processing Magazine, 17(4), 61–82. CrossRefGoogle Scholar
  2. 2.
    Liu, Y., & Li, Y. (2000). Error concealment for digital images using data hiding. In Proc. of the ninth DSP workshop (pp. 1–6). Google Scholar
  3. 3.
    Li, X., & Orchard, M. T. (2002). Novel sequential error-concealment techniques using orientation adaptive interpolation. IEEE Transaction on Circuits System and Video Technology, 12(10), 857–864. CrossRefGoogle Scholar
  4. 4.
    Chen, M. J., Chen, C. S., & Chi, M. C. (2003). Recursive block-matching principle for error concealment algorithm. In Proc. of international symposium on circuits and systems (Vol. 2, pp. 528–531). Google Scholar
  5. 5.
    Sun, H., & Kwok, W. (1995). Concealment of damaged block transform coded images using projection onto convex sets. IEEE Transaction on Image Processing, 4(4), 470–477. CrossRefGoogle Scholar
  6. 6.
    Gir, G., Alagoz, F., & AbdelHafez, M. (2005). A novel error concealment method for images using watermarking in error-prone channels. In Proc. 16th IEEE international symposium on personal, indoor and mobile radio communications (pp. 2637–2641). Google Scholar
  7. 7.
    Nayak, C. K., Jayalakshmi, M., Merchant, S. N., & Desai, U. B. (2007). Projection onto convex sets with watermarking for error concealment. In Lecture notes in computer science (Vol. 4815, pp. 119–127). Google Scholar
  8. 8.
    Carli, M., Farias, M., Bailey, D., & Mitra, S. (2002). Error control and concealment for video transmission using data hiding. In Proc. 5th international symposium on wireless personal multimedia communications (pp. 812–815). Google Scholar
  9. 9.
    Phadikar, A., & Maity, S. P. (2009). Image error concealment based on data hiding using dual-tree complex wavelets. In Proc. of 4th Indian international conference of artificial intelligence, Tumkur, India (pp. 1761–1781). Google Scholar
  10. 10.
    Phadikar, A., & Maity, S. P. (2009). M-ary QIM data hiding for error concealment of digital image in JPEG pipeline. In Proc. of international conference on advances in computing, control, and telecommunication technologies, IEEE Explore, Kerala, India (pp. 93–97). Google Scholar
  11. 11.
    Grosbois, R., Gerbelot, P., & Ebrahimi, T. (2001). Authentication and access control in the JPEG2000 compressed domain. In Proc. 46th SPIE annual meeting, applications of digital image processing (pp. 95–104). Google Scholar
  12. 12.
    Imaizumi, S., Watanabe, O., Fujiyoshi, M., & Kiya, H. (2005). Generalized hierarchical encryption of JPEG 2000 code streams for access control. In Proc. IEEE international conference on image processing (pp. 1094–1097). Google Scholar
  13. 13.
    Pickering, M., Coria, L. E., & Nasiopoulos, P. (2007). A novel blind video watermarking scheme for access control using complex wavelets. In Proc. of IEEE international conference on consumer electronics, Las Vegas (NV) (pp. 1–2). Google Scholar
  14. 14.
    Chang, F. C., Huang, H. C., & Hang, H. M. (2007). Layered access control schemes on watermarked scalable media. Journal of VLSI Signal Processing, 49, 443–455. CrossRefGoogle Scholar
  15. 15.
    Liu, J. L. (2006). Efficient selective encryption for JPEG 2000 images using private initial table. Pattern Recognition, 39, 509–517. Google Scholar
  16. 16.
    Phadikar, A., & Maity, S. P. (2010, in press). Quality access control of compressed color images using data hiding. AEU-International Journal of Electronics and Communications. Google Scholar
  17. 17.
    Calderbank, A. R., Daubechies, I., Sweldens, W., & Yeo, B. L. (1998). Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis, 5, 332–369. CrossRefGoogle Scholar
  18. 18.
    Ye, S., & Char, E. (2004). Edge directed filter based error concealment for wavelet-based images. In Proc. international conference on image processing (pp. 809–812). Google Scholar
  19. 19.
    Hemami, S. S., & Gray, R. M. (1997). Subband-coded image reconstruction for lossy packet networks. IEEE Transactions on Image Processing, 6(4), 522–539. CrossRefGoogle Scholar
  20. 20.
    Taubman, D. S., & Marcellin, M. W. (2002). JPEG 2000: fundamentals, standards and practice. Boston: Kluwer Academic. CrossRefGoogle Scholar
  21. 21.
    Li, S. J., Zheng, X., Mou, X., & Cai, Y. (2002). Chaotic encryption scheme for real-time digital video. In Proc. SPIE on electronic imaging, San Jose, USA (Vol. 4666, pp. 149–160). Google Scholar
  22. 22.
    Chuanmu, L., & Lianxi, H. (2007). A new image encryption scheme based on hyperchaotic sequences. In Proc. IEEE international workshop anti-counterfeiting, security, identification (pp. 237–240). Google Scholar
  23. 23.
    Bose, R. (2005). Information theory coding and cryptography. India: Tata McGraw-Hill. Google Scholar
  24. 24.
    Barni, M., Bartolini, F., & Piva, A. (2001). Improved wavelet-based watermarking through pixel-wise masking. IEEE Transactions on Image Processing, 10(5), 783–791. CrossRefGoogle Scholar
  25. 25.
    Christopoulos, C., Skodras, A., & Ebrahimi, T. (2000). The JPEG 2000 still image coding system: an overview. IEEE Transactions on Consumer Electronics, 46(4), 1103–1127. CrossRefGoogle Scholar
  26. 26.
    Heinzelman, W. R., Budagavi, M., & Talluri, R. (2000). Unequal error protection of MPEG-4 video transmission. IEEE Transactions on Image Processing, 15(8). Google Scholar
  27. 27.
  28. 28.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error measurement to structural similarity. IEEE Transactions on Image Processing, 13, 1–14. CrossRefGoogle Scholar
  29. 29.
    Maity, S. P., & Mukherjee, M. (2009). A high capacity CI/MC-CDMA system for reduction in PAPR. In Proc. of seventh annual communication networks and services research conference, Brunswick, Canada (pp. 297–304). Google Scholar
  30. 30.
    Fang, L., & Milstein, L. (2001). Performance of successive interference cancellation inconvolutionally coded multicarrier DS/CDMA systems. IEEE Transactions on Communications, 49, 2062–2067. CrossRefGoogle Scholar
  31. 31.
    Rongfu, Z., Yuanhua, Z., & Xiaodong, H. (2004). Content-adaptive spatial error concealment for video communication. IEEE Transaction on Consumer Electronics, 50(1), 335–341. CrossRefGoogle Scholar
  32. 32.
    Zhao, Y., Chen, H., Chi, X., & Jin, J. S. (2005). Spatial error concealment using directional extrapolation. In Proc. of the digital imaging computing: techniques and applications, Cairns, Australia (p. 41). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Information TechnologyMCKV Institute of EngineeringLiluahIndia
  2. 2.Department of Information TechnologyBengal Engineering and Science UniversityShibpurIndia
  3. 3.Laboratiore des Signaux et Systèmes (L2S), CNRSUniversité Paris-Sud XI (UPS), SUPELECGif-Sur-Yvette CedexFrance

Personalised recommendations