Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Quality of experience (QoE) driven adaptation scheme for voice/video over IP


Network quality of service (NQoS) of IP networks is unpredictable and impacts the quality of networked multimedia services. Adaptive voice and video schemes are therefore vital for the provision of voice over IP (VoIP) services for optimised quality of experience (QoE). Traditional adaptation schemes based on NQoS do not take perceived quality into consideration even though the user is the best judge of quality. Additionally, uncertainties inherent in NQoS parameter measurements make the design of adaptation schemes difficult and their performance suboptimal. This paper presents a QoE-driven adaptation scheme for voice and video over IP to solve the optimisation problem to provide optimal QoE for networked voice and video applications. The adaptive VoIP architecture was implemented and tested both in NS2 and in an Open IMS Core network to allow extensive simulation and test-bed evaluation. Results show that the scheme was optimally responsive to available network bandwidth and congestion for both voice and video and optimised delivered QoE for different network conditions, and is friendly to TCP traffic.

This is a preview of subscription content, log in to check access.


  1. 1.

    skype., continuously updated.

  2. 2.

    Razavi, R., Fleury, M., & Ghanbari, M. (2007). Fuzzy logic control of adaptive ARQ for video distribution over a bluetooth wireless link. Adv. Multimedia, 2007(1), 8.

  3. 3.

    Jammeh, E. A., Fleury, M., & Ghanbari, M. (2008). Fuzzy logic congestion control of transcoded video streaming without packet loss feedback. IEEE Transactions on Circuits and Systems for Video Technology, 18(3), 387–393.

  4. 4.

    Sun, L., & Ifeachor, E. (2004). A new models for perceived voice quality prediction and their applications in playout buffer optimisation for VoIP networks. In Proceedings of IEEE international conference on communications (IEEE ICC 2004) (pp. 1478–1483), Paris, France, June 2004.

  5. 5.

    Yin, N., & Hluchyj, M. G. (1991). A dynamic rate control mechanism for source coded traffic in a fast packet network. IEEE Journal on Selected Areas in Communications, 9, 1003–1012.

  6. 6.

    Shenker, S. (1995). Fundamental design issues for the future Internet. IEEE Journal, 13, 1176–1188.

  7. 7.

    Bolot, J. C., & Vega-Garcia, A. (1996). Control mechanisms for packet audio in the Internet. In INFOCOM ’96, fifteenth annual joint conference of the IEEE computer societies. Networking the next generation (Vol. 1, pp. 232–239).

  8. 8.

    Perkins, C., Hodson, O., & Hardman, V. (1998). A survey of packet loss recovery techniques for streaming audio. Network, IEEE, 12, 40–48.

  9. 9.

    Papadimitriou, P., & Tsaoussidis, V. (2007). A rate control scheme for adaptive video streaming over the Internet. In IEEE ICC.

  10. 10.

    Beritelli, F., Ruggeri, G., & Schembra, G. (2002). Tcp-friendly transmission of voice over ip. In IEEE international conference on communications (Vol. 2, pp. 1204–1208).

  11. 11.

    Jinsul, K., Ho, H. S., Hyun-Woo, L., Won, R., & Minsoo, H. (2006). Qos-factor transmission control mechanism for voice over IP network based on RTCP-XR scheme. Consumer Electronics, 1–6.

  12. 12.

    Friedman, T., Caceres, R., & Clark, A. (2003). RTP control protocol extended reports (RTCP XR). RFC 3611.

  13. 13.

    Moura, N. T., Vianna, B. A., Albuquerque, C. V. N., Rebello, V. E. F., & Boeres, C. (2007). Mos-based rate adaption for VoIP sources. Communications, 628–633.

  14. 14.

    Rejaie, R., Handley, M., & Estrin, D. (1999). RAP: an end-to-end rate-based congestion control mechanism for realtime streams in the Internet in INFOCOM ’99. In Eighteenth annual joint conference of the IEEE computer and communications societies (Vol. 3, pp. 1337–1345).

  15. 15.

    Barberis, A., Casetti, C., Martin, J. C. D., & Meo, M. (2001). A simulation study of adaptive voice communications on IP networks. Computer Communications, 24, 757–767.

  16. 16.

    Sabrina, F., & Valin, J. M. (2008). Adaptive rate control for aggregated VoIP traffic. In Global telecommunications conference: IEEE GLOBECOM (pp. 1–6).

  17. 17.

    Qiao, Z., Sun, L., Heilemann, N., & Ifeachor, E. (2004). A new method for voip quality of service control use combined adaptive sender rate and priority marking. In IEEE international conference in communications (Vol. 4, pp. 1473–1477).

  18. 18.

    Wang, Y., Schaar, M., & Loui, A. (2005). Classification-based multidimensional adaptation prediction for scalable video coding using subjective quality evaluation. IEEE Transactions on Circuits and Systems for Video Technology, 15(10).

  19. 19.

    Cranley, N., Murphy, L., & Perry, P. (2004). Lecture notes in computer science : Vol. 3271. Content-based adaptation of streamed multimedia (pp. 39–49). Berlin: Springer.

  20. 20.

    Koumaras, H., Kourtis, A., Martakos, D., & Lauterjung, J. (2007). Quantified PQOS assessment based on fast estimation of the spatial and temporal activity level. Journal of Multimedia Tools and Applications, 34(3).

  21. 21.

    Onur, O., & Alatan, A. (2007). Video adaptation based on content characteristics and hardware capabilities. In Second international workshop on semantic media adaptation and personalization. IEEE Computer Society Press.

  22. 22.

    Manzato, M., & Goularter, R. (2005). Live video adaptation: a context-aware approach. In ACM proceedings on the 11th Brazilian symposium on multimedia and the web.

  23. 23.

    Antoniou, P., Pitsillides, A., & Vassiliou, V. (2007). Adaptive feedback algorithm for Internet video streaming based on fuzzy rate control. In 12th IEEE ISCC’07.

  24. 24.

    Hayashi, T., Kawaguti, G., Okamoto, J., & Takahasi, A. (2006). Subjective quality estimation model for video streaming services with dynamic bit-rate control. IEICE Transactions on Communications, E89-B(2).

  25. 25.

    Alexiou, A., Bouras, C., & Igglesis, V. (2005). A decision feedback scheme for multimedia transmission over 3g mobile networks. In WOCN.

  26. 26.

    Garudadri, H., Chung, H., Srinivasamurthy, N., & Sagetong, P. (2007). Rate adaptation for video telephony in 3g networks. Packet Video.

  27. 27.

    Alexiou, A., Antonellis, D., & Bouras, C. (2007). Adaptive and reliable video transmission over UMTS for enhanced performance. International Journal of Communication Systems, 20, 65–81.

  28. 28.

    Kim, D., & Jun, K. (2006). Dynamic bandwidth allocation scheme for video streaming in wireless cellular networks. IEICE Transactions on Communications, E89-B(2).

  29. 29.

    Jammeh, E., Fleury, M., & Ghanbari, M. (2006). Non-packet-loss-based rate adaptive video over the Internet. Electronic Letters, 42(8), 492–494.

  30. 30.

    ITU (2001). Perceptual evaluation of speech quality (PESQ), an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs. In ITU-T rec. (p. 862), February 2001.

  31. 31.

    Sun, L., & Ifeachor, E. (2006). Voice quality prediction models and their applications in VoIP networks. IEEE Transactions on Multimedia, 8, 809–820.

  32. 32.

    Khan, A., Sun, L., & Ifeachor, E. (2008). An anfis-based hybrid video quality prediction model for video streaming over wireless networks. In IEEE NGMAST, September 2008.

  33. 33.

    ITU (2000). The e-model, a computational model for use in transmission planning. In ITU-T rec. G.107, July 2000.

  34. 34.


  35. 35.

    Wei, D. X., Jin, C., Low, S. H., & Hegde, S. (2004). Fast TCP: motivation, architecture, algorithms, performance. In INFOCOM.

  36. 36.

    Ekudden, E., Hagen, R., Johansson, I., & Svedberg, J. (1999). AMR speech coder. In Proc. IEEE workshop on speech coding (pp. 117–119), Porvoo, Finland, June 1999.

  37. 37.

    Yang, Y. R., & Lam, S. S. (2000). General AIMD congestion control. Technical report TR-2000-09. The University of Texas at Austin, May 2000.

  38. 38.

    Klaue, J., Rathke, B., & Wolisz, A. (2003). Evalvid—a framework for video transmission and quality evaluation. In Proc. of the 13th international conference on modelling techniques and tools for computer performance evaluation (pp. 255–272).

  39. 39.

    Khan, A., Sun, L., & Ifeachor, E. (2009). Content-based video quality prediction for mpeg4 video streaming over wireless networks. Journal of Multimedia, 5.

  40. 40.

    DeMartin, J. C. (2001). Source-driven packet marking for speech transmission over differentiated-services networks. In IEEE international conference on acoustics, speech, and signal processing (pp. 753–756).

Download references

Author information

Correspondence to E. Jammeh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jammeh, E., Mkwawa, I., Khan, A. et al. Quality of experience (QoE) driven adaptation scheme for voice/video over IP. Telecommun Syst 49, 99–111 (2012).

Download citation


  • VoIP
  • IMS
  • AMR
  • QoE
  • NQoS
  • Quality adaptation