Telecommunication Systems

, Volume 49, Issue 1, pp 49–62 | Cite as

A parametric model for perceptual video quality estimation



In this paper, a parametric model is proposed which provides estimation for the perceived quality of video, coded with different codecs, at any bit rate and display format. The video quality metric used is one of the standardized Full Reference models in Recommendations ITU-T J.144 and ITU-R BT.1683. The proposed model is based on the video quality estimation described in Recommendation ITU-T G.1070, but incorporates different enhancements, allowing a much better estimation of the perceptual MOS values, especially in low bit rate ranges. The error obtained with the proposed model, regarding to the ITU models, is between the ITU algorithms error margins, according to the subjective tests developed by the VQEG. Studies were made for more than 1500 processed video clips, coded in MPEG-2 and H.264/AVC, in bit rate ranges from 50 kb/s to 12 Mb/s, in SD, VGA, CIF and QCIF display formats.


Video perceptual quality Video codecs Video signal processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ISO/IEC 13818-2:2000. Information technology—generic coding of moving pictures and associated audio information: video. Google Scholar
  2. 2.
    ITU-T H.264 advanced video coding for generic audiovisual services, March 2005. Google Scholar
  3. 3.
    Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13. Google Scholar
  4. 4.
    Basso, A., Dalgic, I., Tobagi, F. A., & van den Branden Lambrecht, C. J. (1996). Study of MPEG-2 coding performance based on a perceptual quality metric. In Proceedings of the picture coding symposium, Melbourne, Australia, March 1996. Google Scholar
  5. 5.
    Kamaci, N., & Altunbasak, Y. Performance comparison of the emerging H.264 video coding standard with the existing standards. In ICME ’03 proceedings (Vol. 1, pp. 345-348). Google Scholar
  6. 6.
    Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., & Wedi, T. (2004). Video coding with H.264/AVC: tools, performance, and complexity. IEEE Circuits and Systems Magazine. Google Scholar
  7. 7.
    Aeluri, P. K., Bojan, V., Richie, S., & Weeks, A. Objective quality analysis of MPEG-1, MPEG-2 & windows media video. In 6th IEEE southwest symposium on image analysis and interpretation (pp. 221–225), March 2004. Google Scholar
  8. 8.
    Ichigaya, A., Nishida, Y., & Nakasu, E. (2008). Nonreference method for estimating PSNR of MPEG-2 coded video by using DCT coefficients and picture energy. IEEE Transactions on Circuits and Systems for Video Technology, 18(6), 817–826. CrossRefGoogle Scholar
  9. 9.
    Wang, S., Zheng, D., Zhao, J., Tarn, W. J., & Speranza, F. (2004). Video quality measurement using digital watermarking. In Proceedings of the 3rd IEEE international workshop on haptic, audio and visual environments and their applications, HAVE 2004 (pp. 183–188), 2 October 2004. Google Scholar
  10. 10.
    Winkler, S. (2005). Digital video quality, vision models and metrics. New York: Wiley. Google Scholar
  11. 11.
    Winkler, S., & Mohandas, P. (2008). The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Transactions on Broadcasting, 54(3). Google Scholar
  12. 12.
    Recommendation ITU-T J.144. Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference, February 2004. Google Scholar
  13. 13.
    Recommendation ITU-R BT.1683. Objective perceptual video quality measurement techniques for standard definition digital broadcast television in the presence of a full reference, January 2004. Google Scholar
  14. 14.
    Final report of VQEG’s multimedia phase I validation test, 19 September 2008. Google Scholar
  15. 15.
    Test plan for evaluation of video quality models for use with high definition TV content, draft version 3.0, 2009. Google Scholar
  16. 16.
    Liang, Y. J., Apostolvpoulos, J. G., & Gird, B.(2003). Analysis of packet loss for compressed video: does burst-length matter? In IEEE international conference on acoustics, speech, and signal processing (ICASSP). Google Scholar
  17. 17.
    Reibman, A. R., Vaishampayan, V. A., & Sermadevi, Y. (2004). Quality monitoring of video over a packet network. IEEE Transactions on Multimedia, 6(2). Google Scholar
  18. 18.
    Nishikawa, K. M., & Kiya, K. H. (2008). No-reference PSNR estimation for quality monitoring of motion JPEG2000 video over lossy packet networks. IEEE Transactions on Multimedia, 10(4), 637–645. CrossRefGoogle Scholar
  19. 19.
    Yamagishi, K., & Hayashi, T. (2006). Opinion model for estimating video quality of videophone services. In IEEE global telecommunications conference, 27 November 2006. Google Scholar
  20. 20.
    Hayashi, T., Yamagishi, K., Tominaga, T., & Takahashi, A. (2007). Multimedia quality integration function for videophone services. In IEEE global telecommunications conference, 26–30 November 2007. Google Scholar
  21. 21.
    Hybrid perceptual/bitstream group test plan, draft version 1.3, 4 January 2009. Google Scholar
  22. 22.
    Final report from the video quality experts group on the validation of objective models of video quality assessment, phase II ©2003 VQEG, 25 August 2003. Google Scholar
  23. 23.
    Pinson, M. H., & Wolf, S. (2004). A new standardized method for objectively measuring video quality. IEEE Transactions on Broadcasting, 50(3), 312–322. CrossRefGoogle Scholar
  24. 24.
    Cho, S., Choe, J., Jeong, T., Ahn, W., & Lee, E. (2006). Objective video quality assessment. Optical Engineering 45(1). Google Scholar
  25. 25.
    Lotufo, A., Da Silva, R., Falcao, W. D. F., & Pessoa, A. X. (1998). Morphological image segmentation applied to video quality assessment. In IEEE proceedings in computer graphics, image processing and vision, SIGGRAPI proceedings (pp. 468–475), October 1998. Google Scholar
  26. 26.
    Bourret, A. J., Hands, D. S., Bayart, D., & Davies, A. G. (2006). Method and system for video quality assessment, US Patent No. 2006/0152585 A1, 13 July 2006. Google Scholar
  27. 27.
    Recommendation ITU-R BT.500-11. Methodology for the subjective assessment of the quality of television pictures, June 2002. Google Scholar
  28. 28.
    Recommendation ITU-T P.910. Subjective video quality assessment methods for multimedia applications, September 1999. Google Scholar
  29. 29.
    Video Quality Metric (VQM) Software [Online]. Available at:
  30. 30.
    VQEG Phase I Test Sequences. [Online]. Available at:
  31. 31.
    Raake, A., Garcia, M. N., Moller, S., Berger, J., Kling, F., List, P., & Heidemann, J. J. T-V-model: parameter-based prediction of IPTV quality. In IEEE ICASSP. Google Scholar
  32. 32.
    Koumaras, H., Kourtis, A., Martakos, D., & Lauterjung, J. (2007). Quantified PQoS assessment based on fast estimation of the spatial and temporal activity level. Multimedia Tools and Applications, 34(3). Google Scholar
  33. 33.
    Yamagishi, K., & Hayashi, T. (2008). Parametric packet-layer model for monitoring video quality of IPTV services. In IEEE international conference on communications (ICC 08), 19 May 2008. Google Scholar
  34. 34.
    Joch, A., Kossentini, F., Schwarz, H., Wiegand, T., & Sullivan, G. J. (2002). Performance comparison of video coding standards using Lagrangian coder control. In IEEE IFIP. Google Scholar
  35. 35.
    Wiegand, T., Schwarz, H., Joch, A., Kossentini, F., & Sullivan, G. J. F. (2003). Rate-constrained coder control and comparison of video coding standards, IEEE Transactions on Circuits and Systems for Video Technology. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.ETSE TelecomunicaciónVigoSpain

Personalised recommendations