Telecommunication Systems

, Volume 48, Issue 1–2, pp 109–124 | Cite as

Optimization of link load balancing in multiple spanning tree routing networks

  • Dorabella Santos
  • Amaro de Sousa
  • Filipe Alvelos
  • Mateusz Dzida
  • Michał Pióro
Article

Abstract

In telecommunication networks based on the current Ethernet technology, routing of traffic demands is based on multiple spanning trees: the network operator configures different routing spanning trees and assigns each demand to be routed in one of the selected spanning trees. A major optimization issue in this solution is the combined determination of (i) a set of appropriate spanning trees, and (ii) assignment of demands to the trees, in order to achieve an optimal load balancing on the links of the network. In this paper we consider models and solving techniques for lexicographical optimization of two load balancing objective functions. The first objective is the min-max optimization of the n worst link loads (with n up to the total number of network links), and the second objective is the minimization of the average link load (when n is smaller than the total number of network links). Besides exact methods, a heuristic technique that can compute both feasible solutions and lower bounds for the addressed optimization problem is proposed. Finally, we discuss effectiveness of different solution using results of a numerical study of realistic case studies.

Keywords

Ethernet networks Load balancing Multiple spanning tree routing Traffic engineering Integer programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE Standard 802.1s (2002). Virtual bridged local area networks—Amendment 3: multiple spanning trees. Google Scholar
  2. 2.
    Technical Specification MEF 6.1, (2008). Ethernet services definitions—Phase 2, Metro Ethernet Forum. Google Scholar
  3. 3.
    de Sousa, A. F., & Soares, G. (2007). Improving load balance and minimizing service disruption on ethernet networks using IEEE 802.1S MSTP. In EuroFGI workshop on IP QoS and traffic control (pp. 25–35). Paris: IST. Google Scholar
  4. 4.
    Iovanna, P., Nicosia, G., Oriolo, G., Sanita, L., & Sperduto, E. (2008). Local restoration for trees and arborescences. In Lecture notes on computer science : Vol. 5464. First Euro-NF workshop, FITraMEn 2008, Revised selected papers (pp. 130–140). Berlin: Springer. Google Scholar
  5. 5.
    Padmaraj, M., Nair, S., Marchetti, M., Chiruvolu, G., & Ali, M. (2005). Traffic engineering in enterprise ethernet with multiple spanning tree regions. In Proc. of system communications (ICW’05), Montreal, Canada (pp. 261–266). Google Scholar
  6. 6.
    de Sousa, A. F., & Soares, G. (2006). Improving load balance of ethernet carrier networks using IEEE 802.1S MSTP with multiple regions. In Lecture notes on computer science : Vol. 3976. IFIP TC6 networking (pp. 1250–1260). Berlin: Springer. Google Scholar
  7. 7.
    Kern, A., Moldovan, I., & Cinkler, T. (2006). Scalable tree optimization for QoS ethernet. In IEEE symp. on computers and communications (ISCC’06) (pp. 578–584). Google Scholar
  8. 8.
    Ali, M., Chiruvolu, G., & Ge, A. (2005). Traffic engineering in metro ethernet. IEEE Network, 19(2), 10–17. CrossRefGoogle Scholar
  9. 9.
    Kolarov, A., Sengupta, B., & Iwata, A. (2004). Design of multiple reverse spanning trees in next generation of ethernet-VPNs. In IEEE GLOBECOM’04 (Vol. 3, pp. 1390–1395). Google Scholar
  10. 10.
    Sharma, S., Gopalan, K., Nanda, S., & Chiueh, T. (2004). Viking: a multi-spanning-tree ethernet architecture for metropolitan area and cluster networks. In IEEE INFOCOM’04 (Vol. 4, pp. 2283–2294). Google Scholar
  11. 11.
    Ishizu, K., Kuroda, M., & Kamura, K. (2004). SSTP: an 802.1s extention to support scalable spanning tree for mobile metropolitan area network. In IEEE GLOBECOM’04 (Vol. 3, pp. 1500–1504). Google Scholar
  12. 12.
    Lim, Y., Yu, H., Das, S., Lee, S.-S., & Gerla, M. (2003). QoS-aware multiple spanning tree mechanism over a bridged LAN environment. In IEEE GLOBECOM’03 (Vol. 6, pp. 3068–3072). Google Scholar
  13. 13.
    Santos, D., de Sousa, A., & Alvelos, F. (2008). Traffic engineering of telecommunication networks based on multiple spanning tree routing. In Lecture notes on computer science : Vol. 5464. First Euro-NF workshop, FITraMEn 2008, Revised selected papers (pp. 114–129). Berlin: Springer. Google Scholar
  14. 14.
    Santos, D., de Sousa, A., & Alvelos, F. (2009). Load balancing of telecommunication networks based on multiple spanning trees. In International network optimization conference (INOC), Pisa, Italy. Google Scholar
  15. 15.
    Pióro, M., & Medhi, D. (2004). Routing, flow and capacity design in communication and computer networks. San Mateo: Morgan Kaufmann. Google Scholar
  16. 16.
    Ogryczak, W., Pióro, M., & Tomaszewski, A. (2005). Telecommunications network design and max-min optimization problem. Journal of Telecommunications and Information Technology, 3, 43–56. Google Scholar
  17. 17.
    Nace, D., & Pióro, M. (2008). Max-Min fairness and its applications to routing and load-balancing in communication networks: a tutorial. IEEE Surveys and Tutorials, 10(4), 5–17. CrossRefGoogle Scholar
  18. 18.
    Radunovic, B., & Boudec, J.-Y. L. (2007). A unified framework for max-min and min-max fairness with applications. ACM/IEEE Transactions on Networking, 15(5), 1073–1083. CrossRefGoogle Scholar
  19. 19.
    Dzida, M., Pióro, M., & Zagożdżon, M. (2004). The application of max-min fairness rule to bandwidth allocation in telecommunication networks. In The 3rd Polish-German teletraffic symposium (PGTS), Dresden. Google Scholar
  20. 20.
    Pióro, M., Dzida, M., Kubilinskas, E., Nilsson, P., Ogryczak, W., Tomaszewski, A., & Zagożdżon, M. (2005). Applications of the max-min fairness principle in telecommunication network design. In Next generation Internet networks (NGI 05), IEEE Xplore, Rome, Italy. Google Scholar
  21. 21.
    Ogryczak, W., Milewski, M., & Wierzbicki, A. (2007). Fair and effcient bandwidth allocation with the reference point methodology. In International network optimization conference (INOC), Spa, Belgium. Google Scholar
  22. 22.
    Ogryczak, W., & Śliwiński, T. (2003). On solving linear programs with the ordered weighted averaging objective. European Journal of Operational Research, 148, 80–91. CrossRefGoogle Scholar
  23. 23.
    Santos, D., de Sousa, A., Alvelos, F., Dzida, M., Pióro, M., & Zagożdżdon, M. (2009). Traffic engineering of multiple spanning tree routing networks: the load balancing case. In Next generation Internet networks (NGI 09), IEEE Xplore, Aveiro, Portugal. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dorabella Santos
    • 1
  • Amaro de Sousa
    • 2
  • Filipe Alvelos
    • 3
  • Mateusz Dzida
    • 4
  • Michał Pióro
    • 4
    • 5
  1. 1.Instituto de TelecomunicaçõesAveiroPortugal
  2. 2.Instituto de Telecomunicações / DETIUniversidade de AveiroAveiroPortugal
  3. 3.Centro Algoritmi / Dep. Produção e SistemasUniversidade do MinhoBragaPortugal
  4. 4.Institute of TelecomunicationsWarsaw University of TechnologyWarsawPoland
  5. 5.Department of Electrical and Information TechnologyLund UniversityLundSweden

Personalised recommendations