Telecommunication Systems

, Volume 48, Issue 1–2, pp 63–75 | Cite as

Powering Internet with power-law networking

  • Ilkka NorrosEmail author
  • Hannu Flinck


It is generally recognized that the current routing scheme of Internet suffers from serious scalability problems. In this paper, we work with the abstract but ‘Internet-like’ network model consisting of an infinite-variance power-law random graph (IVPLRG). We adopt the idea of a routing scheme proposed by Carmi, Cohen and Dolev (C-C-D). The scheme fits very naturally to the spontaneously emerging ‘soft hierarchy’ architecture on an IVPLRG. The use of multiple addresses is suggested as a solution to the inflexibility of the pure C-C-D scheme. A mean-field approximation is introduced for efficient computation of relevant quantitative characteristics and applied to various problems of our scheme. We review a few recent Internet routing proposals and discuss their relation to our scheme. We find out that the topology creation of our scheme offers advantages in terms of scalability and routing policy control.


Locator-identifier separation Compact routing Power-law Random graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brady, A., & Cowen, L. (2006). Compact routing on power-law graphs with additive stretch. In ALENEX. Google Scholar
  2. 2.
    Carmi, S., Cohen, R., & Dolev, D. (2006). Searching complex networks efficiently with minimal information. Europhysics Letters, 74(6), 1102–1108. CrossRefGoogle Scholar
  3. 3.
    Chung, F., & Lu, L. (2003). The average distance in a random graph with given expected degrees. Internet Mathematics, 1(1), 91–113. CrossRefGoogle Scholar
  4. 4.
    Cowen, L. (2001). Compact routing with minimum stretch. Journal of Algorithms, 38(1), 170–183. CrossRefGoogle Scholar
  5. 5.
    Farinacci, D., Fuller, V., & Meyer, D. (2009). Locator/ID separation protocol (LISP). Internet Draft, September 16, 2009.
  6. 6.
    Farinacci, D., Fuller, V., Meyer, D., & Lewis, D. (2009). LISP alternative topology (LISP + ALT). draft-ietf-lisp-alt-05.txt. Internet Draft, February 24, 2009.
  7. 7.
    Godfrey, P., Ganichev, I., Shenker, S., & Stoica, I. (2009). Pathlet routing. In SIGCOMM’09, Barcelona, Spain, August 2009. Google Scholar
  8. 8.
    Janson, S., Łuczak, T., & Norros, I. (2009, submitted). Large cliques in a power-law random graph. arXiv:0905.0561.
  9. 9.
    Krioukov, D., Fall, K., & Yang, X. (2004). Compact routing on Internet-like graphs. In Infocom. doi: 10.1109/INFCOM.2004.1354495.
  10. 10.
    Krioukov, D., Claffy, K. C., Fall, K., & Brady, A. (2007). On compact routing for the Internet. ACM SIGCOMM Computer Communication Review (CCR), 37(3), 41–52. CrossRefGoogle Scholar
  11. 11.
    Norros, I. (2009). Powernet: compact routing on Internet-like random networks. In NGI 2009, Aveiro, July 2009. Google Scholar
  12. 12.
    Norros, I., & Reittu, H. (2006). On a conditionally Poissonian graph process. Advances in Applied Probability, 38, 59–75. CrossRefGoogle Scholar
  13. 13.
    Norros, I., & Reittu, H. (2008). Network models with a ‘soft hierarchy’: a random graph construction with loglog scalability. IEEE Network, 22(2), 40–46. CrossRefGoogle Scholar
  14. 14.
    Norros, I., & Reittu, H. (2008). On the attack resistance of power-law random graphs in the finite mean, infinite variance region. Internet Mathematics, 5(3), 251–266. CrossRefGoogle Scholar
  15. 15.
    Reittu, H., & Norros, I. (2002). On the effect of very large nodes in Internet graphs. In Proc. GLOBECOM, Taipei, Taiwan. Google Scholar
  16. 16.
    Yang, X., Clark, D., & Berger, A. (2007). NIRA: a new inter-domain routing architecture. IEEE/ACM Transactions on Networking, 15(4), 775–788. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.VTT Technical Research Centre of FinlandEspooFinland
  2. 2.Nokia Siemens NetworksEspooFinland

Personalised recommendations