Telecommunication Systems

, Volume 48, Issue 1–2, pp 5–17 | Cite as

Traffic characterization of a residential wireless Internet access

  • Florian Wamser
  • Rastin Pries
  • Dirk Staehle
  • Klaus Heck
  • Phuoc Tran-Gia


Traffic characterization is an important means for Internet Service Providers (ISPs) to adapt and to optimize their networks to the requirements of the customers. Most network measurements are performed in the backbone of these ISPs, showing both, residential and business Internet traffic. However, the traffic characteristics of business and home users differ significantly. Therefore, we have performed measurements of home users at a broadband wireless access service provider in order to reflect only home user traffic characteristics.

In this paper, we present the results of these measurements, showing daily traffic fluctuations, flow statistics as well as application distributions. The results show a difference to backbone traffic characteristics. Furthermore, we observed a shift from web and Peer-to-Peer (P2P) file sharing traffic to streaming applications.


Traffic measurements Traffic classification Broadband wireless access 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DE-CIX German Internet Exchange. (2010).
  2. 2.
    Cisco Systems Inc. (2009). Cisco visual networking index—forecast and methodology, 2008–2013. White Paper. Google Scholar
  3. 3.
    Cisco Systems Inc. (2009). Hyperconnectivity and the approaching zettabyte era. White Paper. Google Scholar
  4. 4.
    Fukuda, K., Cho, K., & Esaki, H. (2005). The impact of residential broadband traffic on Japanese ISP backbones. SIGCOMM Computer Communication Review, 35(1), 15–22. CrossRefGoogle Scholar
  5. 5.
    Pries, R., Wamser, F., Staehle, D., Heck, K., & Tran-Gia, P. (2009). Traffic measurement and analysis of a broadband wireless Internet access. In IEEE VTC spring 09, Barcelona, Spain. Google Scholar
  6. 6.
    Paxson, V., Mahdavi, J., Adams, A., & Mathis, M. (1998). An architecture for large-scale Internet measurement. IEEE Communications, 36(8), 48–54. CrossRefGoogle Scholar
  7. 7.
    Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely, T., & Diot, C. (2003). Packet-level traffic measurements from the sprint IP backbone. IEEE Network, 17(6), 6–16. CrossRefGoogle Scholar
  8. 8.
    Brownlee, N., & Claffy, K. C. (2002). Understanding Internet traffic streams: dragonflies and tortoises. IEEE Communications Magazine, 40(10), 110–117. CrossRefGoogle Scholar
  9. 9.
    Brownlee, N., Mills, C., & Ruth, G. (1999). Traffic flow measurement: architecture. Google Scholar
  10. 10.
    Fraleigh, C., Diot, C., Lyles, B., Moon, S. B., Owezarski, P., Papagiannaki, D., & Tobagi, F. A. (2001). Design and deployment of a passive monitoring infrastructure. In IWDC ’01: proceedings of the thyrrhenian international workshop on digital communications, Taormina, Italy (pp. 556–575). Google Scholar
  11. 11.
    Apisdorf, J., Claffy, K. C., Thompson, K., & Wilder, R. (1997). OC3MON: flexible, affordable, high performance statistics collection. In Proc. of INET 97. Google Scholar
  12. 12.
    Thompson, K., Miller, G. J., & Wilder, R. (1997). Wide-area Internet traffic patterns and characteristics (extended version). IEEE Network, 11(4), 10–23. CrossRefGoogle Scholar
  13. 13.
    McCreary, S., & Claffy, K. C. (2000). Trends in wide area IP traffic patterns—a view from ames Internet exchange. In Proceedings of the 13th ITC specialist seminar on Internet traffic measurement and modelling, Monterey, CA. Google Scholar
  14. 14.
    Keys, K., Moore, D., Koga, R., Lagache, E., Tesch, M., & Claffy, K. C. (2001). The architecture of CoralReef: an Internet traffic monitoring software suite. In PAM2001—a workshop on passive and active measurements. Google Scholar
  15. 15.
    Shannon, C., Moore, D., & Claffy, K. C. (2002). Beyond folklore: observations on fragmented traffic. IEEE/ACM Transactions on Networking (TON), 10(6), 709–720. CrossRefGoogle Scholar
  16. 16.
    Karagiannis, T., Broido, A., Brownlee, N., Claffy, K. C., & Faloutsos, M. (2003). File-sharing in the Internet: a characterization of P2P traffic in the backbone (Tech. rep.). University of California, Riverside, University of California, Riverside Department of Computer Science, Surge Building, Riverside, CA 92521. Google Scholar
  17. 17.
    Karagiannis, T., Faloutsos, M., Broido, A., Brownlee, N., & Claffy, K. C. (2004). Is P2P dying or just hiding? In IEEE global telecommunications conference, 2004, GLOBECOM’04 (pp. 1532–1538). Google Scholar
  18. 18.
    John, W., & Tafvelin, S. (2007). Analysis of internet backbone traffic and header anomalies observed. In IMC’07: proceedings of the 7th ACM SIGCOMM conference on Internet measurement, New York, NY, USA (pp. 111–116). Google Scholar
  19. 19.
    Caceres, R., Duffield, N. G., Feldmann, A., Friedmann, J., Greenberg, A., Greer, R., Johnson, T., Kalmanek, C., Krishnamurthy, B., Lavelle, D., Mishra, P. P., Ramakrishnan, K. K., Rexford, J., True, F., & van der Merwe, J. E. (2000). Measurement and analysis of IP network usage and behavior. IEEE Communications Magazine, 38(5), 144–151. CrossRefGoogle Scholar
  20. 20.
    Cisco Systems Inc. (2007). Cisco IOS NetFlow. White Paper. Google Scholar
  21. 21.
    Claise, B. (2008). Specification of the IP flow information export (IPFIX) protocol for the exchange of IP traffic flow information. RFC 5101.
  22. 22.
    Quittek, J., Bryant, S., Claise, B., Aitken, P., & Meyer, J. (2008). Information model for IP flow information export. RFC 5102.
  23. 23.
    Karagiannis, T., Broido, A., Faloutsos, M., & Claffy, K. C. (2004). Transport layer identification of P2P traffic. In IMC ’04: proceedings of the 4th ACM SIGCOMM conference on Internet measurement, New York, NY, USA (pp. 121–134). Google Scholar
  24. 24.
    Karagiannis, T., Molle, M., & Faloutsos, M. (2004). Long-range dependence: ten years of Internet traffic modeling. IEEE Internet Computing 8(5), 57–64. CrossRefGoogle Scholar
  25. 25.
    Application Layer Packet Classifier for Linux (L7-filter) (2010). URL
  26. 26.
    Karagiannis, T., Papagiannaki, K., & Faloutsos, M. (2005). BLINC: multilevel traffic classification in the dark. In SIGCOMM ’05: proceedings of the 2005 conference on applications, technologies, architectures, and protocols for computer communications, New York, NY, USA (pp. 229–240). Google Scholar
  27. 27.
    Dahmouni, H., Vaton, S., & Rosse, D. (2007). A Markovian signature-based approach to IP traffic classification. In MineNet ’07: proceedings of the 3rd annual ACM workshop on mining network data, New York, NY, USA (pp. 29–34). Google Scholar
  28. 28.
    Bernaille, L., Teixeira, R., & Salamatian, K. (2006). Early application identification. In CoNEXT ’06: proceedings of the 2006 ACM CoNEXT conference, New York, NY, USA. Google Scholar
  29. 29.
    IPP2P (2010).
  30. 30.
    Rapidshare—easy filehosting (2010). URL
  31. 31.
    Perenyi, M., Dang, T. D., Gefferth, A., & Molnar, S. (2006). Identification and analysis of peer-to-peer traffic. Journal of Communications (JCM), 1(7), 36–46. Google Scholar
  32. 32.
    Ploumidis, M., Papadapouli, M., & Karagiannis, T. (2007). Multi-level application-based traffic characterization in a large-scale wireless network. In International symposium on a world of wireless, mobile and multimedia networks (WoWMoM), Helsinki, Finland. Google Scholar
  33. 33.
    Chlebus, E., & Divgi, G. (2007). The Pareto or truncated Pareto distribution? Measurement-based modeling of session traffic for Wi-Fi wireless Internet access. In IEEE wireless communications and networking conference, 2007, WCNC 2007, Hong Kong, China. Google Scholar
  34. 34.
    Divgi, G., & Chlebus, E. (2007). User and traffic characteristics of a commercial nationwide Wi-Fi hotspot network. In IEEE 18th international symposium on personal, indoor and mobile radio communications, 2007, PIMRC 2007, Athens, Greece. Google Scholar
  35. 35.
    Cisco Systems Inc. (2008). Cisco visual networking index—forecast and methodology, 2007–2012. White Paper. Google Scholar
  36. 36.
    Schulze, H., & Mochalski, K. (2009). Internet study 2008/2009.

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Florian Wamser
    • 1
  • Rastin Pries
    • 1
  • Dirk Staehle
    • 1
  • Klaus Heck
    • 2
  • Phuoc Tran-Gia
    • 1
  1. 1.University of Würzburg, Institute of Computer ScienceWürzburgGermany
  2. 2.Hotzone GmbHBerlinGermany

Personalised recommendations