Telecommunication Systems

, Volume 47, Issue 3–4, pp 243–254 | Cite as

Evaluation of direct attacks to fingerprint verification systems

  • J. GalballyEmail author
  • J. Fierrez
  • F. Alonso-Fernandez
  • M. Martinez-Diaz


The vulnerabilities of fingerprint-based recognition systems to direct attacks with and without the cooperation of the user are studied. Two different systems, one minutiae-based and one ridge feature-based, are evaluated on a database of real and fake fingerprints. Based on the fingerprint images quality and on the results achieved on different operational scenarios, we obtain a number of statistically significant observations regarding the robustness of the systems.


Biometrics Fingerprints Vulnerabilities Attacks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A. K., Ross, A., & Flynn, P. (Eds.) (2008). Handbook of biometrics. Berlin: Springer. Google Scholar
  2. 2.
    Wayman, J., Jain, A., et al. (2005). Biometric systems. Technology, design and performance evaluation. Berlin: Springer. Google Scholar
  3. 3.
    Schneier, B. (1999). The uses and abuses of biometrics. Communications of the ACM, 48, 136. CrossRefGoogle Scholar
  4. 4.
    Ratha, N., Connell, J., & Bolle, R. (2001). An analysis of minutiae matching strength. In LNCS : Vol. 2091. Proc. AVBPA (pp. 223–228). Berlin: Springer. Google Scholar
  5. 5.
    Maltoni, D., Maio, D., et al. (2003). Handbook of fingerprint recognition. Berlin: Springer. Google Scholar
  6. 6.
    Wehde, A., & Beffel, J. N. (1924). Finger-prints can be forged. Tremonia Publish Co. Google Scholar
  7. 7.
    Willis, D., & Lee, M. (1998). Biometrics under our thumb. Network Computing. Google Scholar
  8. 8.
    van der Putte, T., & Keuning, J. (2000). Biometrical fingerprint recognition: don’t get your fingers burned. In Proc. IFIP (pp. 289–303). Google Scholar
  9. 9.
    Matsumoto, T., Matsumoto, H., et al. (2002). Impact of artificial gummy fingers on fingerprint systems. In Proc. SPIE (Vol. 4677, pp. 275–289). Google Scholar
  10. 10.
    Thalheim, L., & Krissler, J. (2002). Body check: biometric access protection devices and their programs put to the test. CT Magazine, November 114–121. Google Scholar
  11. 11.
    Kang, H., Lee, B., et al. (2003). A study on performance evaluation of the liveness detection for various fingerprint sensor modules. In LNAI : Vol. 2774. Proc. KES (pp. 1245–1253). Berlin: Springer. Google Scholar
  12. 12.
    Galbally, J., Cappelli, R., Lumini, A., Gonzalez-de-Rivera, G., Maltoni, D., Fierrez, J., Ortega-Garcia, J., & Maio, D. (2010). An evaluation of direct attacks using fake fingers generated from ISO templates. Pattern Recognition Letters, 31(8), 725–732. CrossRefGoogle Scholar
  13. 13.
    Cappelli, R., Lumini, A., et al. (2007). Fingerprint image reconstruction from standard templates. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29, 1489–1503. CrossRefGoogle Scholar
  14. 14.
    Tan, B., & Schuckers, S. (2006). Comparison of ridge- and intensity-based perspiration liveness detection methods in fingerprint scanners. In Proc. SPIE BTHI IV, Vol. 6202, sect. 62020A. Google Scholar
  15. 15.
    Antonelli, A., Capelli, R., et al. (2006). Fake finger detection by skin distortion analysis. IEEE Trans. on Information Forensics and Security, 1, 360–373. CrossRefGoogle Scholar
  16. 16.
    Chen, Y., & Jain, A. K. (2005). Fingerprint deformation for spoof detection. In Proc. IEEE biometric symposium (pp. 19–21). Google Scholar
  17. 17.
    Coli, P., Marcialis, G. L., & Roli, F. (2008). Fingerprint silicon replicas: static and dynamic features for vitality detection using an optical capture device. International Journal of Image and Graphics, 8, 495–512. CrossRefGoogle Scholar
  18. 18.
    Baldiserra, D., et al. (2006). Fake fingerprint detection by odor analysis. In LNCS : Vol. 3832. Proc. IAPR ICB (pp. 265–272). Berlin: Springer. Google Scholar
  19. 19.
    Lapsley, P., Less, J., et al. (1998). Anti-fraud biometric sensor that accurately detects blood flow. US Patent. Google Scholar
  20. 20.
    Biel, L., Pettersson, O., et al. (2001). ECG analysis: A new approach in human identification. IEEE Trans. on Instrumentation and Measurement, 50, 808–812. CrossRefGoogle Scholar
  21. 21.
    Osten, D., Arneson, H. M., & Blan, B. L. (1998). Biometric personal authentication system. US Patent. Google Scholar
  22. 22.
    Watson, G. I., Garris, M. D., et al. (2004). User’s guide to NIST fingerprint image software 2 (NFIS2). National Institute of Standards and Technology. Google Scholar
  23. 23.
    Fierrez-Aguilar, J., Chen, Y., et al. (2006). Incorporating image quality in multi-algorithm fingerprint verification. In LNCS : Vol. 3832. Proc. IAPR ICB (pp. 213–220). Berlin: Springer. Google Scholar
  24. 24.
    Fronthaler, H., Kollreider, K., et al. (2008). Fingerprint image quality estimation and its application to multi-algorithm verification. Trans. on Information Forensics and Security, 3, 331–338. CrossRefGoogle Scholar
  25. 25.
    Galbally, J., Fierrez, J., et al. (2006). On the vulnerability of fingerprint verification systems to fake fingerprint attacks. Proc. IEEE ICCST, 1, 130–136. Google Scholar
  26. 26.
    Fierrez, J., Ortega-Garcia, J., et al. (2007). BioSec baseline corpus: A multimodal biometric database. Pattern Recognition, 40, 1389–1392. CrossRefGoogle Scholar
  27. 27.
    Tabassi, E., & Wilson, C. L. (2005). A novel approach to fingerprint image quality. Proc. IEEE ICIP, 2, 37–40. Google Scholar
  28. 28.
    Alonso-Fernandez, F., Fierrez, J., et al. (2003). A comparative study of fingerprint image quality estimation methods. IEEE Trans. on Information Forensics and Security, 2, 734–743. CrossRefGoogle Scholar
  29. 29.
    Schuckers, M. E. (2003). Using the bet-binomial distribution to assess performance of a biometric identification device. Int. Journal of Image and Graphics, 3, 523–529. CrossRefGoogle Scholar
  30. 30.
    Schuckers, M. E., Hawley, A., et al. (2004). A comparison of statistical methods for evaluating matching performance of a biometric identification device—a preliminary report. Proc. SPIE BTHI, 5404, 144–155. CrossRefGoogle Scholar
  31. 31.
    Dass, S. C., Zhu, Y., & Jain, A. K. (2006). Validating a biometric authentication system: samples size requirements. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28, 1902–1913. CrossRefGoogle Scholar
  32. 32.
    Bolle, R., Ratha, N., & Pankanti, S. (2004). Error analysis of pattern recognition systems: the subsets bootstrap. Computer Vision and Image Understanding, 93, 1–33. CrossRefGoogle Scholar
  33. 33.
    Fierrez-Aguilar, J., Ortega-Garcia, J., et al. (2005). Discriminative multimodal biometric authentication based on quality measures. Pattern Recognition, 38(5), 777–779. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. Galbally
    • 1
    Email author
  • J. Fierrez
    • 1
  • F. Alonso-Fernandez
    • 1
  • M. Martinez-Diaz
    • 1
  1. 1.Universidad Autonoma de Madrid, EPSMadridSpain

Personalised recommendations