Telecommunication Systems

, Volume 47, Issue 3–4, pp 197–214

An efficient incremental face annotation for large scale web services



This paper proposes an incremental face annotation framework for sharing and publishing photographs which contain faces under a large scale web platform such as a social network service with millions of users. Unlike the conventional face recognition environment addressed by most existing works, the image databases being accessed by the large pool of users can be huge and frequently updated. A reasonable way to efficiently annotate such huge databases is to accommodate an adaptation of model parameters without the need to retrain the model all over again when new data arrives. In this work, we are particularly interested in the following issues related to increment of data: (i) the huge number of images being added at each instant, (ii) the large number of users joining the web each day, and (iii) the large number of classification systems being added at each period. We propose an efficient recursive estimation method to handle these data increment issues. Our experiments on several databases show that our proposed method achieves an almost constant execution time with comparable accuracy relative to those state-of-the-art incremental versions of principal component analysis, linear discriminant analysis and support vector machine.


Face recognition Incremental learning Web service Recursive least squares 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Girgensohn, A., Adcock, J., & Wilcox, L. (2004). Leveraging face recognition technology to find and organize photos. In Proceedings of the 6th ACM SIGMM international workshop on multimedia information retrieval. Google Scholar
  2. 2.
    Zhu, J., Hoi, S., & Lyu, M. (2008). Face annotation using transductive kernel Fisher discriminant. IEEE Transactions on Multimedia, 10(1), 86–96. CrossRefGoogle Scholar
  3. 3.
    Naaman, M., Yeh, R., Garcia-Molina, H., & Paepcke, A. (2005). Leveraging context to resolve identity in photo albums. In Proceedings of the 5th ACM/IEEE-CS joint conference on digital libraries. Google Scholar
  4. 4.
    Zhao, M., Teo, Y., Liu, S., Chua, T., & Jain, R. (2006). Automatic person annotation of family photo album. Lecture Notes in Computer Science, 4071, 163–172. CrossRefGoogle Scholar
  5. 5.
    Chen, L., Hu, B., Zhang, L., Li, M., & Zhang, H. (2003). Face annotation for family photo album management. International Journal of Image and Graphics, 3(1), 1–14. CrossRefGoogle Scholar
  6. 6.
    Zhang, L., Chen, L., Li, M., & Zhang, H. (2003). Automated annotation of human faces in family albums. In Proceedings of the 11th ACM international conference on multimedia (pp. 355–358). Google Scholar
  7. 7.
    Tian, Y., Liu, W., Xiao, R., Wen, F., & Tang, X. (2007). A face annotation framework with partial clustering and interactive labeling. In Proceedings of Computer Vision and Pattern Recognition (pp. 1–8). Google Scholar
  8. 8.
    Berg, T., Berg, A., Edwards, J., Maire, M., White, R., Teh, Y., Learned-Miller, E., & Forsyth, D. (2004). Names and faces in the news. In Proceedings of computer vision and pattern recognition (Vol. 2, pp. 484–854). Google Scholar
  9. 9.
    Berg, T., Berg, A., Edwards, J., & Forsyth, D. (2005). Who’s in the picture? In Proceedings of advances in neural information processing systems (pp. 137–144). Google Scholar
  10. 10.
    Satoh, S., Nakamura, Y., & Kanade, T. (1999). Name-it: naming and detecting faces in news videos. IEEE Transactions on Multimedia, 6(1), 22–35. CrossRefGoogle Scholar
  11. 11.
    Houghton, R. (1999). Named faces: Putting names to faces. IEEE Transactions on Intelligent Systems, 14(5), 45–50. CrossRefGoogle Scholar
  12. 12.
    Yang, J., Yan, R., & Hauptmann, A. (2005). Multiple instance learning for labeling faces in broadcasting news video. In Proceedings of the 13th annual ACM international conference on multimedia (pp. 31–40). Google Scholar
  13. 13.
    Yang, J., & Hauptmann, A. (2004). Naming every individual in news video monologues. In Proceedings of the 12th annual ACM international conference on multimedia (pp. 580–587). Google Scholar
  14. 14. Available:
  15. 15. Available:
  16. 16. Available:
  17. 17.
    Murugesan, S. (2007). Understanding Web 2.0. IT Professional, 9(4), 34–41. CrossRefGoogle Scholar
  18. 18. Available:
  19. 19. Available:
  20. 20.
    Li, J., & Wang, J. Real-time computerized annotation of pictures. IEEE Transactions on Pattern Analysis and Machine Intelligence. Google Scholar
  21. 21. Available:
  22. 22.
    Comscore. Available:
  23. 23.
    Becker, B., & Ortiz, E. (2008). Evaluation of face recognition techniques for applications to Facebook. In Eighth international conference on automated face and gesture recognition (AFGR). Google Scholar
  24. 24.
    Facebook—statistics (2008). Google Scholar
  25. 25.
    Stone, Z., Zickler, T., & Darrell, T. (2008). Autotagging Facebook: social network context improves photo annotation. In Workshop on Internet vision. Google Scholar
  26. 26.
    Choi, K., Byun, H., & Toh, K.-A. (2008). A collaborative face recognition framework on a social network platform. In Eighth international conference on automated face and gesture recognition (AFGR). Google Scholar
  27. 27.
    Zhao, H., & Yuen, P. (2008). Incremental linear discriminant analysis for face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 38(1), 210–221. CrossRefGoogle Scholar
  28. 28.
    Kim, T., Wong, S., Stenger, B., Kittler, J., & Cipolla, R. (2007). Incremental linear discriminant analysis using sufficient spanning set approximations. In Proceedings of computer vision and pattern recognition. Google Scholar
  29. 29.
    Zhao, H., Yuen, P., & Kwok, J. (2006). A novel incremental principal component analysis and its application for face recognition. IEEE Transactions on Systems Man and Cybernetics, Part B, 36(4), 873–886. CrossRefGoogle Scholar
  30. 30.
    Weng, J., Zhang, Y., & Hwang, W. (2003). Candid covariance-free incremental principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 1034–1040. CrossRefGoogle Scholar
  31. 31.
    Chen, W., Pan, B., Fang, B., Li, M., & Tang, J. (2008). Incremental nonnegative matrix factorization for face recognition. Mathematical Problems in Engineering. Google Scholar
  32. 32.
    Wade, W. R. (2000). An introduction to analysis (2nd ed.). New York: Prentice Hall. Google Scholar
  33. 33.
    Toh, K., Tran, Q., & Srinivasan, D. (2004). Benchmarking a reduced multivariate polynomial pattern classifier. IEEE Transactions on Pattern Analysis and Machine Intelligence, 740–755. Google Scholar
  34. 34.
    Tran, Q., Toh, K., & Srinivasan, D. (2004). Adaptation to changes in multimodal biometric authentication. In Proceedings of cybernetics and intelligent systems. Google Scholar
  35. 35.
    Wu, J., Zhou, J., & Yan, P. Incremental proximal support vector classifier for multi-class classification. In Proceedings of machine learning and cybernetics (Vol. 5). Google Scholar
  36. 36.
    Achlioptas, D. (2003). Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4), 671–687. CrossRefGoogle Scholar
  37. 37.
    Martinez, A., & Benavente, R. (1998). The AR face database (CVC Technical Report #24). Google Scholar
  38. 38.
    Liang, N., Huang, G., Saratchandran, P., & Sundararajan, N. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 17(6), 1411–1423. CrossRefGoogle Scholar
  39. 39.
    Liang, Z., & Li, Y. (2009). Incremental support vector machine learning in the primal and applications. Neurocomputing, 72. Google Scholar
  40. 40.
    Ozawa, S., Toh, S., Abe, S., Pang, S., & Kasabov, N. (2005). Incremental learning of feature space and classifier for face recognition. IEEE Transactions on Neural Networks, 18(5–6), 575–584. Google Scholar
  41. 41.
  42. 42.
    Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 643–660. CrossRefGoogle Scholar
  43. 43.
    Sim, T., Baker, S., & Bsat, M. (2003). The CMU Pose, Illumination, and Expression (PIE) database. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1615–1618. CrossRefGoogle Scholar
  44. 44.
    OSUSVM. Available:

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dept. of Computer ScienceYonsei UniversitySeoulSouth Korea
  2. 2.School of Electrical & Electronic EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations