Advertisement

Telecommunication Systems

, Volume 47, Issue 1–2, pp 109–122 | Cite as

Power allocation games in wireless networks of multi-antenna terminals

  • Elena-Veronica Belmega
  • Samson LasaulceEmail author
  • Mérouane Debbah
  • Marc Jungers
  • Julien Dumont
Article

Abstract

We consider wireless networks that can be modeled by multiple access channels in which all the terminals are equipped with multiple antennas. The propagation model used to account for the effects of transmit and receive antenna correlations is the unitary-invariant-unitary model, which is one of the most general models available in the literature. In this context, we introduce and analyze two resource allocation games. In both games, the mobile stations selfishly choose their power allocation policies in order to maximize their individual uplink transmission rates; in particular they can ignore some specified centralized policies. In the first game considered, the base station implements successive interference cancellation (SIC) and each mobile station chooses his best space-time power allocation scheme; here, a coordination mechanism is used to indicate to the users the order in which the receiver applies SIC. In the second framework, the base station is assumed to implement single-user decoding. For these two games a thorough analysis of the Nash equilibrium is provided: the existence and uniqueness issues are addressed; the corresponding power allocation policies are determined by exploiting random matrix theory; the sum-rate efficiency of the equilibrium is studied analytically in the low and high signal-to-noise ratio regimes and by simulations in more typical scenarios. Simulations show that, in particular, the sum-rate efficiency is high for the type of systems investigated and the performance loss due to the use of the proposed suboptimum coordination mechanism is very small.

Keywords

MIMO MAC Non-cooperative games Nash equilibrium Power allocation Price of anarchy Random matrix theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grandhi, S. A., Vijayan, R., & Goodman, D. J. (1992). Distributed algorithm for power control in cellular radio systems. In Proc. of annual Allerton conf. on comm. control and computing, Sep. 1992. Google Scholar
  2. 2.
    Grandhi, S. A., Vijayan, R., & Goodman, D. J. (1994). Distributed power control in cellular radio systems. IEEE Transactions on Communications, 42(234), 226–228. CrossRefGoogle Scholar
  3. 3.
    Ji, H., & Huang, C.-Y. (1998). Non-cooperative uplink power control in cellular radio systems. Wireless Networks, 4(3), 233–240. CrossRefGoogle Scholar
  4. 4.
    Oh, S.-J., Olsen, T. L., & Wasserman, K. M. (2000). Distributed power control and spreading gain allocation in CDMA data networks. In IEEE Proc. of INFOCOM, March 2000 (Vol. 2, pp. 379–385). Google Scholar
  5. 5.
    Goodman, D. J., & Mandayam, N. B. (2000). Power control for wireless data. IEEE Personal Communications, 7(2), 48–54. CrossRefGoogle Scholar
  6. 6.
    Meshkati, F., Chiang, M., Poor, H. V., & Schwartz, S. C. (2006). A game-theoretic approach to energy-efficient power control in multi-carrier CDMA systems. IEEE Journal on Selected Areas in Communications, 24(6), 1115–1129. CrossRefGoogle Scholar
  7. 7.
    Yu, W., Ginis, G., & Cioffi, J. M. (2002). Distributed multiuser power control for digital subscriber lines. IEEE Journal of Selected Areas in Communications, 20(5), 1105–1115. CrossRefGoogle Scholar
  8. 8.
    Lai, L., & El Gamal, H. (2008). The water-filling game in Fading multiple-access channels. IEEE Transactions on Information Theory, 54(5), 2110–2122. CrossRefGoogle Scholar
  9. 9.
    Lasaulce, S., Suarez, A., Debbah, M., & Cottatellucci, L. (2007). Power allocation game for fading MIMO multiple access channels with antenna correlation. In ICST/ACM proc. of the international conf. on game theory in comm. networks (Gamecomm), Nantes, France, Oct. 2007. Google Scholar
  10. 10.
    Arslan, G., Demirkol, M. F., & Song, Y. (2007). Equilibrium efficiency improvement in MIMO interference systems: a decentralized stream control approach. IEEE Transactions on Wireless Communications, 6(8), 2984–2993. CrossRefGoogle Scholar
  11. 11.
    Scutari, G., Palomar, D. P., & Barbarossa, S. (2008). Competitive design of multiuser mimo systems based on game theory: a unified view. IEEE Journal of Selected Areas in Communications, 26(7), 1089–1103. CrossRefGoogle Scholar
  12. 12.
    Carleial, A. (1978). Interference channels. IEEE Transactions on Information Theory, 24(1), 60–70. CrossRefGoogle Scholar
  13. 13.
    Palomar, D. P., Cioffi, J. M., & Lagunas, M. A. (2003). Uniform power allocation in mimo channels: a game theoretic approach. IEEE Transactions on Information Theory, 49(7), 1707–1727. CrossRefGoogle Scholar
  14. 14.
    Belmega, E. V., Lasaulce, S., & Debbah, M. (2008). Power control in distributed multiple access channels with coordination. In Internat. workshop on wireless networks: communication, cooperation and competition (WNC3), April 2008. Google Scholar
  15. 15.
    Wyner, A. D. (1974). Recent results in Shannon theory. IEEE Transactions on Information Theory, 20, 2–10. CrossRefGoogle Scholar
  16. 16.
    Cover, T. (1975). Some advances in broadcast channels. In Advances in communication systems (Vol. 4). San Diego: Academic Press. Google Scholar
  17. 17.
    Rosen, J. (1965). Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, 33, 520–534. CrossRefGoogle Scholar
  18. 18.
    Biglieri, E., Taricco, G., & Tulino, A. (2002). How far is infinity? Using asymptotic analyses in multiple-antennas systems. In Proc. of the intl symposium on software testing and analysis (ISSTA) 2002 (Vol. 1, pp. 1–6). Google Scholar
  19. 19.
    Dumont, J., Loubaton, P., & Lasaulce, S. (2006). On the capacity achieving transmit covariance matrices of MIMO correlated Rician channels: a large system approach. In IEEE Proc. of Globecom technical conference, Nov./Dec. 2006. Google Scholar
  20. 20.
    Tulino, A., & Verdu, S. (2004). Random Matrices and Wireless Communications. In Foundations and trends in comm. and inform. theory, NOW, the essence of knowledge, 2004. Google Scholar
  21. 21.
    Tulino, A., & Verdu, S. (2005). Impact of antenna correlation on the capacity of multi-antenna channels. IEEE Transactions on Information Theory, 51(7), 2491–2509. CrossRefGoogle Scholar
  22. 22.
    Tulino, A., Lozano, A., & Verdu, S. (2006). Capacity-achieving input covariance for single-user multi-antenna channels. IEEE Transactions on Wireless Communications, 5(3), 662–670. CrossRefGoogle Scholar
  23. 23.
    Dumont, J., Hachem, W., Lasaulce, S., Loubaton, P., & Najim, J. (2010). On the capacity achieving covariance matrix of Rician MIMO channels: an asymptotic approach. IEEE Transactions on Information Theory. doi: 10.1109/TIT.2009.2039063 Google Scholar
  24. 24.
    Roughgarden, T., & Tardos, E. (2002). How bad is selfish routing? Journal of the ACM (JACM), 49(2), 236–259. CrossRefGoogle Scholar
  25. 25.
    Chiani, M., Win, M. Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleiggh-Fading channels. IEEE Transactions on Information Theory, 49(10), 2363–2371. CrossRefGoogle Scholar
  26. 26.
    Skupch, A., Seethaler, D., & Hlawatsch, F. (2005). Free probability based capacity calculation for MIMO channels with transmit or receive correlation. In International conference on wireless networks, communications and mobile computing, June 2005. Google Scholar
  27. 27.
    Belmega, E. V., Lasaulce, S., & Debbah, M. (2009). A trace inequality for positive definite matrices. Journal of Inequalities in Pure and Applied Mathematics (JIPAM), 10(1), 1–4. Google Scholar
  28. 28.
    Belmega, E. V., Jungers, M., & Lasaulce, S. (2009). A generalization of a trace inequality for positive definite matrices. Journal of Inequalities in Pure and Applied Mathematics (JIPAM) (under revision). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elena-Veronica Belmega
    • 1
  • Samson Lasaulce
    • 1
    Email author
  • Mérouane Debbah
    • 2
  • Marc Jungers
    • 3
  • Julien Dumont
    • 4
  1. 1.LSS (joint lab of CNRS, Supélec, Univ. Paris-Sud 11)SupélecGif-sur-Yvette CedexFrance
  2. 2.Alcatel-Lucent Chair on Flexible RadioSupélecGif-sur-Yvette CedexFrance
  3. 3.CRANNancy-Université, CNRSVandoeuvre-les-NancyFrance
  4. 4.Lycée ChaptalParisFrance

Personalised recommendations