Telecommunication Systems

, Volume 44, Issue 3–4, pp 297–306 | Cite as

Cryptanalysis of block-wise stream ciphers suitable for the protection of multimedia and ubiquitous systems

  • Deok Gyu Lee
  • Jongsung Kim
  • Jaechul Sung
  • Yang Sun Lee
  • Seungmin Rho
Article

Abstract

In this paper we introduce a general framework of related-key attack on block-wise stream ciphers which are suitable for the protection of multimedia and ubiquitous systems. As a case study, we show how our cryptanalytic framework is applied to a block-wise stream cipher TWOPRIME: we construct various related-key differentials of TWOPRIME and use them to show that recovering related keys of TWOPRIME can be performed with a data complexity of 214 known plaintext blocks and a time complexity of 232 8-bit table lookups. We expect that our general framework for a related-key attack would be useful tool for analyzing many of block-wise stream ciphers.

Keywords

Security analysis Block-wise stream ciphers Related-key attacks TWOPRIME 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Advanced encryption algorithm (AES) development effort, 1997–2000. http://csrc.nist.gov/encryption/aes/.
  2. 2.
    Bellare, M., & Kohno, T. (2003). A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In LNCS : Vol. 2654. Advances in cryptology—EUROCRYPT’03 (pp. 491–506). Berlin: Springer. Google Scholar
  3. 3.
    Biham, E. (1994). New types of cryptanalytic attack using related keys. In LNCS : Vol. 765. Advances in cryptology—EUROCRYPT’93 (pp. 398–409). Berlin: Springer. Journal of Cryptology, 7(4), 156–171 (1994). Google Scholar
  4. 4.
    Biham, E., Dunkelman, O., & Keller, N. (2005). Related-key boomerang and rectangle attacks. In LNCS : Vol. 3494. Advances in cryptology—proceedings of EUROCRYPT 2005 (pp. 507–525). Berlin: Springer. Google Scholar
  5. 5.
    Biham, E., Dunkelman, O., & Keller, N. (2005). A related-key rectangle attack on the full KASUMI. In LNCS : Vol. 3788. Advances in cryptology—proceedings of ASIACRYPT 2005 (pp. 443–461). Berlin: Springer. CrossRefGoogle Scholar
  6. 6.
    Biham, E., Dunkelman, O., & Keller, N. (2006). Related-key impossible differential attacks on AES-192. In LNCS : Vol. 3860. Topics in cryptology—proceedings of CT-RSA 2006 (pp. 21–31). Berlin: Springer. CrossRefGoogle Scholar
  7. 7.
    Blunden, M., & Escott, A. (2001). Related key attacks on reduced round KASUMI. In LNCS : Vol. 2355. The 8th fast software encryption workshop (FSE’01) (pp. 277–285). Berlin: Springer. CrossRefGoogle Scholar
  8. 8.
    Coppersmith, D., Wagner, D., Schneier, B., & Kelsey, J. (1998). Cryptanalysis of TWOPRIME. In LNCS : Vol. 1372. The 5th fast software encryption workshop (FSE’98) (pp. 32–48). Berlin: Springer. CrossRefGoogle Scholar
  9. 9.
    Daemen, J., & Clapp, C. (1998). Fast hashing and stream encryption with PANAMA. In LNCS : Vol. 1372. The 5th fast software encryption workshop (FSE’98) (pp. 60–74). Berlin: Springer. CrossRefGoogle Scholar
  10. 10.
    Ding, C., Niemi, V., Renvall, A., & Salomaa, A. (1997). TWOPRIME: A fast stream ciphering algorithm. In LNCS : Vol. 1267. The 4th fast software encryption workshop (FSE’97) (pp. 88–102). Berlin: Springer. CrossRefGoogle Scholar
  11. 11.
    Dunkelman, O., Keller, N., & Kim, J. (2006). Related-key rectangle attack on the full SHACAL-1. In LNCS : Vol. 4356. SAC’06 (pp. 28–44). Berlin: Springer. Google Scholar
  12. 12.
    Ekdahl, P., & Johansson, T. (2002). A new version of the stream cipher SNOW. In LNCS : Vol. 2595. SAC’02 (pp. 47–61). Berlin: Springer. Google Scholar
  13. 13.
    Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., & Kohno, T. (2003). Helix: Fast encryption and authentication in a single cryptographic primitive. In LNCS : Vol. 2887. The 10th fast software encryption workshop (FSE’03) (pp. 330–346). Berlin: Springer. Google Scholar
  14. 14.
    Gorski, M., & Lucks, S. (2008). New related-key boomerang attacks on AES. In LNCS : Vol. 5365. INDOCRYPT’08 (pp. 266–278). Berlin: Springer. Google Scholar
  15. 15.
    Grosul, A., & Wallach, D. (2000). A related-key cryptanalysis of RC4 (Technical Report TR-00-358). Rice University, June 2000. Google Scholar
  16. 16.
    Halevi, S., Coppersmith, D., & Jutla, C. (2002). Scream: A software-efficient stream cipher. In LNCS : Vol. 2365. The 9th fast software encryption workshop (FSE’02) (pp. 195–209). Berlin: Springer. CrossRefGoogle Scholar
  17. 17.
    Hawkes, P., & Rose, G. G. (2000). Primitive specification and supporting documentation for SOBER-t32 submission to NESSIE. In Proceedings of the first open NESSIE workshop. Google Scholar
  18. 18.
    Hong, S., Kim, J., Lee, S., & Preneel, B. (2005). Related-key rectangle attacks on reduced versions of SHACAL-1 and AES-192. In LNCS : Vol. 3557. The 12th fast software encryption workshop (FSE’05) (pp. 368–383). Berlin: Springer. Google Scholar
  19. 19.
    Jakimoski, G., & Desmedt, Y. (2004). Related-key differential cryptanalysis of 192-bit key AES variants. In LNCS : Vol. 3006. SAC’03 (pp. 208–221). Berlin: Springer. Google Scholar
  20. 20.
    Jeong, K., Lee, C., Sung, J., Hong, S., & Lim, J. (2007). Related-key amplified boomerang attacks on the full-round Eagle-64 and Eagle-128. In LNCS : Vol. 4586. ACISP’07 (pp. 143–157). Berlin: Springer. Google Scholar
  21. 21.
    Kelsey, J., Schneier, B., & Wagner, D. (1996). Key schedule cryptanalysis of IDEA, G-DES, GOST, SAFER, and triple-DES. In LNCS : Vol. 1109. Advances in cryptology—CRYPTO’96 (pp. 237–251). Berlin: Springer. Google Scholar
  22. 22.
    Kelsey, J., Schneir, B., & Wagner, D. (1997). Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In LNCS : Vol. 1334. ICICS’97 (pp. 233–246). Berlin: Springer. Google Scholar
  23. 23.
    Kim, J., Kim, G., Hong, S., Lee, S., & Hong, D. (2004). The related-key rectangle attack—application to SHACAL-1. In LNCS : Vol. 3108. ACISP’04 (pp. 123–136). Berlin: Springer. Google Scholar
  24. 24.
    Kim, J., Kim, G., Lee, S., Lim, J., & Song, J. (2004). Related-key attacks on reduced rounds of SHACAL-2. In LNCS : Vol. 3348. Proceedings of INDOCRYPT 2004 (pp. 175–189). Berlin: Springer. CrossRefGoogle Scholar
  25. 25.
    Kim, J., Hong, S., & Preneel, B. (2007). Related-key rectangle attacks on reduced AES-192 and AES-256. In LNCS : Vol. 4593. The 14th fast software encryption workshop (FSE’07 (pp. 225–241). Berlin: Springer. CrossRefGoogle Scholar
  26. 26.
    Knudsen, L. R. (1993). Cryptanalysis of LOKI91. In LNCS : Vol. 718. Advances in cryptology—AUSCRYPT’92 (pp. 196–208). Berlin: Springer. Google Scholar
  27. 27.
    Ko, Y., Hong, S., Lee, W., Lee, S., & Kang, J. (2004). Related-key differential attacks on 26 rounds of XTEA and full rounds of GOST. In LNCS : Vol. 3017. The 11th fast software encryption workshop (FSE’04) (pp. 299–316). Berlin: Springer. Google Scholar
  28. 28.
    Lee, E., Kim, J., Hong, D., Lee, C., Sung, J., Hong, S., & Lim, J. (2008). Weak-key classes of 7-round MISTY 1 and 2 for related-key amplified boomerang attacks. IEICE Transactions, 91-A(2), 642–649. Google Scholar
  29. 29.
    Lee, C., Kim, J., Hong, S., Sung, J., & Lee, S. (2008). Security analysis of the full-round DDO-64 block cipher. Journal of Systems and Software, 81(1), 2328–2335. CrossRefGoogle Scholar
  30. 30.
    Lu, J. (2008). Related-key rectangle attack on 36 rounds of the XTEA block cipher. International Journal of Information Security, 8(1), 1–11. CrossRefGoogle Scholar
  31. 31.
    Lu, J., & Kim, J. (2008). Attacking 44 rounds of the SHACAL-2 block cipher using related-key rectangle cryptanalysis. IEICE Transactions, 91-A(9), 2588–2596. Google Scholar
  32. 32.
    Lu, J., Kim, J., Keller, N., & Dunkelman, O. (2006). Related-key rectangle attack on 42-round SHACAL-2. In LNCS : Vol. 4176. ISC’06 (pp. 85–100). Berlin: Springer. Google Scholar
  33. 33.
    Lu, J., Lee, C., & Kim, J. (2006). Related-key attacks on the full-round Cobra-F64a and Cobra-F64b. In LNCS : Vol. 4116. SCN’06 (pp. 95–110). Berlin: Springer. Google Scholar
  34. 34.
    Lucks, S. (2004). Cipher secure against related-key attacks. In LNCS : Vol. 3017. The 11th fast software encryption workshop (FSE’04) (pp. 359–370). Berlin: Springer. Google Scholar
  35. 35.
    Lucks, S., & Weis, R. (1999). A Related-key attack against 14 rounds of skipjack (Technical Report). Universitat Mannheim. Google Scholar
  36. 36.
    Phan, R. C.-W., & Handschuh, H. (2004). On related-key and collision attacks: the case for the IBM 4758 cryptoprocessor. In LNCS : Vol. 3225. ISC 2004 (pp. 111–122). Berlin: Springer. Google Scholar
  37. 37.
    Phan, R. C.-W., & Shamir, A. (2008). Improved related-key attacks on DESX and DESX+. Cryptologia, 32(1), 13–22. CrossRefGoogle Scholar
  38. 38.
    Razali, E., & Phan, R. C.-W. (2006). On the existence of related-key oracles in cryptosystems based on block ciphers. In LNCS : Vol. 4277. OTM Workshops 2006 (pp. 425–438). Berlin: Springer. CrossRefGoogle Scholar
  39. 39.
    Rivest, R. (1996). RC4, unpublished work (a description of RC4 appears in B. Schneier, Applied Cryptography, 1996). Google Scholar
  40. 40.
    Rogaway, P., & Coppersmith, D. (1994). A software-optimized encryption algorithm. In LNCS : Vol. 809. The 1st fast software encryption workshop (FSE’93) (pp. 56–63). Berlin: Springer. Google Scholar
  41. 41.
    Sekar, G., Paul, S., & Preneel, B. (2007). Related-key attacks on the Py-family of ciphers and an approach to repair the weaknesses. In LNCS : Vol. 4859. Indocrypt’07 (pp. 58–72). Berlin: Springer. Google Scholar
  42. 42.
    Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal. Google Scholar
  43. 43.
    Wang, G. (2007). Related-key rectangle attack on 43-round SHACAL-2. In LNCS : Vol. 4464. ISPEC’07 (pp. 33–42). Berlin: Springer. Google Scholar
  44. 44.
    Zhang, W., Wu, W., Zhang, L., & Feng, D. (2007). Improved related-key impossible differential attacks on reduced-round AES-192. In LNCS : Vol. 4356. SAC’06 (pp. 15–27). Berlin: Springer. Google Scholar
  45. 45.
    Zhang, W., Zhang, L., Wu, W., & Feng, D. (2007). Related-key differential-linear attacks on reduced AES-192. In LNCS : Vol. 4859. INDOCRYPT’07 (pp. 73–85). Berlin: Springer. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Deok Gyu Lee
    • 1
  • Jongsung Kim
    • 2
  • Jaechul Sung
    • 3
  • Yang Sun Lee
    • 4
  • Seungmin Rho
    • 5
  1. 1.ETRI (Electronics and Telecommunications Research Institute)DaejeonKorea
  2. 2.Division of e-BusinessKyungnam UniversityMasanKorea
  3. 3.Department of MathematicsUniversity of SeoulSeoulKorea
  4. 4.Department of Information & Communication EngineeringChosun UniversityGwangjuKorea
  5. 5.School of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations