Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Packet level performance analysis of a packet scheduler exploiting multiuser diversity

  • 57 Accesses

  • 5 Citations

Abstract

In this paper, we consider a packet scheduler exploiting multiuser diversity in a wireless network with AMC (Adaptive Modulation and Coding), and propose a packet level performance model based on the effective bandwidth theory to investigate the joint effect of the AMC and the multiuser diversity scheduling on the scheduler performance. Based on our performance model and analysis, we investigate the packet level performance behavior of the scheduler. Numerical studies are also provided to show the usefulness of our packet level performance model in the design of the packet scheduler.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Srivastava, V., & Motani, M. (2005). Cross-layer design: a survey and the road ahead. IEEE Communications Magazine, 43(12), 112–119.

  2. 2.

    Liu, Q., Zhou, S., & Giannakis, G. B. (2004). Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 3(5), 1746–1755.

  3. 3.

    Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Queuing with adaptive modulation and coding over wireless links: cross-layer analysis and design. IEEE Transactions on Wireless Communications, 4(3), 1142–1153.

  4. 4.

    Grossglauser, M., & Tse, D. (2001). Mobility increases the capacity of wireless adhoc networks. In Proc. IEEE INFOCOM’01, April 2001.

  5. 5.

    Ishizaki, F., & Hwang, G. U. (2008). Queueing delay analysis for the joint scheduling exploiting multiuser diversity over a fading channel. Wireless Personal Communications, 46(4), 397–411.

  6. 6.

    Knopp, R., & Humblet, P. A. (1995). Information capacity and power control in single-cell multiuser communications. In Proc. of IEEE ICC ’95, pp. 331–335.

  7. 7.

    Wu, D., & Negi, R. (2005). Utilizing multiuser diversity for efficient support of quality of service over a fading channel. IEEE Transactions on Vehicular Technology, 54(3), 1198–1206.

  8. 8.

    Ferrús, R., Alonso, L., Umbert, A., Revés, X., Pérez-Romero, J., & Casadevall, F. (2005). Cross-layer scheduling strategy for UMTS downlink enhancement. IEEE Radio Communications, 2(2), 24–28.

  9. 9.

    Qin, X., & Berry, R. (2003). Exploiting multiuser diversity for medium access control in wireless networks. In Proc. of IEEE INFOCOM ’03, pp. 1084–1094.

  10. 10.

    Shakkottai, S., Rappaport, T. S., & Karlsson, P. C. (2003). Cross-layer design for wireless networks. IEEE Communications Magazine, 41(10), 74–80.

  11. 11.

    Ishizaki, F., & Hwang, G. U. (2007). Queueing delay analysis for packet schedulers with/without multiuser diversity over a fading channel. IEEE Transactions on Vehicular Technology, 56(5), 3220–3227.

  12. 12.

    Alouini, M.-S., & Goldsmith, A. J. (2000). Adaptive modulation over Nakagami fading channels. Journal on Wireless Communications, 13(1–2), 119–143.

  13. 13.

    3GPP TR 25.848 V4.0.0 (2001). Physical layer aspects of UTRA high speed downlink packet access (release 4).

  14. 14.

    Doufexi, A., Armour, S., Butler, M., Nix, A., Bull, D., McGeehan, J., & Karlsson, P. (2002). A comparison of the HIPERLAN/2 and IEEE 802.11a wireless LAN standards. IEEE Communications Magazine, 40(5), 172–180.

  15. 15.

    Yacoub, M. D., Bautista, J. E. V., & de Guedes, R. L. G. (1999). On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology, 48(3), 790–794.

  16. 16.

    Chang, C.-S. (2000). Performance guarantees in communication networks. Berlin: Springer.

  17. 17.

    Chang, C.-S., & Thomas, J. A. (1995). Effective bandwidths in high-speed digital networks. IEEE Journal on Selected Areas Communications, 3, 1091–1100.

  18. 18.

    Elwalid, A. I., & Mitra, D. (1993). Effective bandwidths of general Markovian traffic sources and admission control of high speed networks. IEEE/ACM Transactions on Networking, 1, 329–343.

  19. 19.

    Hassan, M., Krunz, M. M., & Matta, I. (2004). Markov-based channel characterization for tractable performance analysis in wireless packet networks. IEEE Transactions on Wireless Communications, 3, 821–831.

  20. 20.

    Kelly, F. P. (1991). Effective bandwidths at multi-class queues. Queueing Systems, 9, 5–16.

  21. 21.

    Kesidis, G., Walrand, J., & Chang, C.-S. (1993). Effective bandwidths for multiclass Markov fluids and other ATM sources. IEEE/ACM Transactions on Networking, 1, 424–428.

  22. 22.

    Mark, B. L., & Ramamurthy, G. (1998). Real-time estimation and dynamic renegotiation of UPC parameters for arbitrary traffic sources in ATM networks. IEEE/ACM Transactions on Networking, 6(6), 811–827.

  23. 23.

    Ishizaki, F., & Hwang, G. U. (2007). Cross-layer design and analysis of wireless networks with effective bandwidth. IEEE Transactions on Wireless Communications, 6(9), 3214–3219.

Download references

Author information

Correspondence to Gang Uk Hwang.

Additional information

This research was supported by the MIC (Ministry of Information and Communication), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA (Institute for Information Technology Advancement) (IITA-2009-C1090-0902-0013). This research was also supported by Nanzan University Pache Research Subsidy I-A-2 for the 2009 academic year.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, G.U., Ishizaki, F. Packet level performance analysis of a packet scheduler exploiting multiuser diversity. Telecommun Syst 45, 249–258 (2010). https://doi.org/10.1007/s11235-009-9250-1

Download citation

  • Packet scheduler
  • Adaptive modulation and coding (AMC)
  • Multiuser diversity
  • Quality of service (QoS)
  • Wireless channel
  • Effective bandwidth function