Advertisement

Telecommunication Systems

, Volume 43, Issue 3–4, pp 197–206 | Cite as

An improved Hurst parameter estimator based on fractional Fourier transform

  • YangQuan Chen
  • Rongtao Sun
  • Anhong Zhou
Article

Abstract

A fractional Fourier transform (FrFT) based estimation method is introduced in this paper to analyze the long range dependence (LRD) in time series. The degree of LRD can be characterized by the Hurst parameter. The FrFT-based estimation of Hurst parameter proposed in this paper can be implemented efficiently allowing very large data set. We used fractional Gaussian noises (FGN) which typically possesses long-range dependence with known Hurst parameters to test the accuracy of the proposed Hurst parameter estimator. For justifying the advantage of the proposed estimator, some other existing Hurst parameter estimation methods, such as wavelet-based method and a global estimator based on dispersional analysis, are compared. The proposed estimator can process the very long experimental time series locally to achieve a reliable estimation of the Hurst parameter.

Keywords

Fractional Fourier transform Fractional Gaussian noise Hurst parameter Long-range dependence Wavelets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Y. (2005). Fractional order signal processing in biology/biomedical signal analysis. In Fractional order calculus day at Utah State University. http://mechatronics.ece.usu.edu/foc/event/FOC_Day@USU/.
  2. 2.
    Blok, H. J. (2000). On the nature of the stock market: simulations and experiments. PhD thesis, University of British Columbia. Google Scholar
  3. 3.
    Veitch, D., & Abry, P. (1999). A wavelet based joint estimator of the parameters of long-range dependence. IEEE Transactions on Information Theory, Special Issue on Multiscale Statistical Signal Analysis and Its Applications, 45(3), 878–897. Google Scholar
  4. 4.
    Li, M. (2004). An approach to reliably identifying signs of DDOS flood attacks based on LRD traffic pattern recognition. Computers & Security, 23(7), 549–558. CrossRefGoogle Scholar
  5. 5.
    Li, M. (2007). Modeling autocorrelation functions of long-range dependent teletraffic series based on optimal approximation in Hilbert space—a further study. Applied Mathematical Modelling, 31(3), 625–631. CrossRefGoogle Scholar
  6. 6.
    Li, M., & Lim, S. C. (2008). Modeling network traffic using generalized Cauchy process. Physica A, 387(11), 2584–2594. Google Scholar
  7. 7.
    Beran, J., Sherman, R., Taqqu, M. S., & Willinger, W. (1995). Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communications, 43(2/3/4). Google Scholar
  8. 8.
    Zaveri, N., Sun, R., Peng, Y., Zhou, A., & Chen, Y. (2006). Biocorrosion study of stainless steel using electrochemical, AFM, and SEM. In Proceedings of the 11th annual institute of biological engineering meeting, poster presentation. Google Scholar
  9. 9.
    Zaveri, N., Sun, R., Zufelt, N., Zhou, A., & Chen, Y. (2007). Evaluation of microbially influenced corrosion with electrochemical noise analysis and signal processing. Electrochimica Acta, 52, 5795–5807. CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Sun, R., Zhou, A., & Zaveri, N. (2008). Fractional order signal processing of electrochemical noises. Journal of Vibration and Control, 14(9–10), 1443–1456. CrossRefGoogle Scholar
  11. 11.
    Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Proceedings American Society of Civil Engineering, 116, 770–799. Google Scholar
  12. 12.
    Stoev, S., Taqqu, M., Park, C., & Marron, J. S. (2005). On the wavelet spectrum diagnostic for Hurst parameter estimation in the analysis of Internet traffic. Computer Networks, 48(3), 423–445. CrossRefGoogle Scholar
  13. 13.
    Stoev, S., Taqqu, M., Park, C., Michailidis, G., & Marron, J. S. (2004). LASS: a tool for the local analysis of self-similarity in Internet traffic (SAMSI Technical Reports No. 7). www.eecs.umich.edu/~msim/Publications/lass-paper11.pdf.
  14. 14.
    Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence. Annals of Statistics, 23, 1630–1661. CrossRefGoogle Scholar
  15. 15.
    Pallikari, F., & Boller, E. (1999). A rescaled range analysis of random events. Journal of Scientific Exploration, 13(1), 25–40. Google Scholar
  16. 16.
    Sun, R., Zaveri, N., Chen, Y., Zhou, A., & Zufelt, N. (2006). Electrochemical noise signal processing using R/S analysis and fractional Fourier transform. In Proceedings of the 2nd IFAC workshop on fractional differentiation and its applications (pp. 249–254). Google Scholar
  17. 17.
    Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis, 4, 221–238. CrossRefGoogle Scholar
  18. 18.
    Ozaktas, H. M., Kutay, M. A., & Zalevsky, Z. (2000). The fractional Fourier transform with applications in optics and signal processing. New York: Wiley. Google Scholar
  19. 19.
    Ozaktas, H. M., & Mendlovi, D. (1993). Fractional Fourier transformations and their optical implementation: part II. Journal of the Optical Society of America A, 10, 2522–2531. CrossRefGoogle Scholar
  20. 20.
    Feng, S., Han, D., & Ding, H. (2004). Experimental determination of Hurst exponent of the self-affine fractal patterns with optical fractional Fourier transform. Science in China Series G, 47(4). Google Scholar
  21. 21.
    Sun, R., Chen, Y., Zaveri, N., & Zhou, A. (2006). Local analysis of long-range dependence based on fractional Fourier transform. In Proceedings of the 2006 IEEE mountain workshop on adaptive and learning systems (pp. 13–18). Google Scholar
  22. 22.
    Davidson, B. (2006). Hurst exponent. In Matlab central file exchange. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9842&objectType=file.
  23. 23.
    Taqqu, M. S., Teverovsky, V., & Willinger, W. (1995). Estimators for long-range dependence: an empirical study. Fractals, 3, 785–788. CrossRefGoogle Scholar
  24. 24.
    Beran, J. (1994). Statistics for long-memory processes. New York: Chapman & Hall. Google Scholar
  25. 25.
    Mandelbrot, B. B., & Ness, J. W. V. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10, 422–437. CrossRefGoogle Scholar
  26. 26.
    Condon, E. U. (1937). Immersion of the Fourier transform in a continuous group of functional transformations. Proceedings of National Academy Sciences, 23, 158–164. CrossRefGoogle Scholar
  27. 27.
    Almeida, L. B. (1994). The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 42(11), 3084–3091. CrossRefGoogle Scholar
  28. 28.
    Zayed, A. I. (1996). On the relationship between the Fourier transform and fractional Fourier transform. IEEE Signal Processing Letters, 3(12), 310–311. CrossRefGoogle Scholar
  29. 29.
    Bultheel, A., & Martínez, H. (2002). A shattered survey of fractional Fourier transform. http://www.cs.kuleuven.ac.be/publicaties/rapporten/tw/TW337.pdf.
  30. 30.
    Li, Y., Szu, H. H., Sheng, Y., & Caulfield, H. J. (1993). Wavelet processing and optics. Proceedings of the International Society for Optical Engineering, 2051, 130–141. Google Scholar
  31. 31.
    Morlier, J. (2005). Segmentation of the homogeneity of a signal using a piecewise linear recognition tool. eprint arXiv:cs/0503086.
  32. 32.
    Chen, Y. (2006). Ubiquitous fractional order controls? In Proc. of the second IFAC symposium on fractional derivatives and applications (IFAC FDA06, Plenary Paper.) (pp. 1–12). Slides available at http://mechatronics.ece.usu.edu/foc/fda06/01ifac-fda06-plenary-talk%235-chen-utah.ppt.
  33. 33.
    Sun, R. (2007). Fractional order signal processing: techniques and applications. Master of Science thesis, Dept. of Electrical and Computer Engineering. Utah State University. Google Scholar
  34. 34.
    Chen, Y., Sun, R., & Zhou, A. (2007). An overview of fractional order signal processing (FOSP) techniques. In Proc. of the ASME design engineering technical conferences, ASME (pp. DETC2007–34228). 3rd ASME symposium on fractional derivatives and their applications (FDTA’07), part of the 6th ASME international conference on multibody systems, nonlinear dynamics, and control (MSNDC). Google Scholar
  35. 35.
    Ortigueira, M. D. (2000). Introduction to fractional linear systems. Part 1. Continuous-time case. IEE Proceedings on Vision, Image and Signal Processing, 147(1), 62–70. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for Self-Organizing and Intelligent Systems (CSOIS), Department of Electrical and Computer EngineeringUtah State UniversityLoganUSA
  2. 2.Phase Dynamics, Inc.RichardsonUSA
  3. 3.Department of Biological and Irrigational EngineeringUtah State UniversityLoganUSA

Personalised recommendations