Telecommunication Systems

, 43:95 | Cite as

Fast adaptive routing supporting mobile senders in Source Specific Multicast

  • Thomas C. Schmidt
  • Matthias Wählisch
  • Maik Wodarz


IP multicast deployment recently progresses, but group services often remain restricted to limited domains and fail to comply with route-optimizing mobility management of the next generation Internet. Source Specific Multicast (SSM) facilitates transparent inter-domain routing and is expected to globally disseminate to many users and services. However, mobility support for Source Specific Multicast is still known to be a major open problem. In this paper, we propose the Enhanced Tree Morphing (ETM) protocol for extending SSM routing to mobile multicast sources. The scheme dynamically adapts SSM forwarding states to sender mobility, and transforms (morphs) source specific distribution trees into new, optimal trees rooted at a relocated source. ETM is simple, robust and secure, while it admits superior performance in packet forwarding at a low signaling overhead. Extensive evaluations based on a full protocol implementation, and simulations based on real-world topology data are performed, granting full insight into the properties of packet loss and delay stretch, protocol convergence times and router state evolution during single and rapidly repeated handovers. In a constant bit rate scenario, an ETM source handover typically leads to a slightly increasing delay of the first data packet, only. When operating on realistic network topologies, the protocol uniformly converges within less than 50 ms, thereby sustaining robustness under rapid source movement at all speeds common to our mobile world. Further optimizations are identified for FMIPv6 and for multihomed nodes.


Mobile multicast routing SSM Source Mobility Route optimization Mobile IPv6 FMIPv6 Multihoming Performance analysis 


  1. 1.
    Johnson, D. B., Perkins, C., & Arkko, J. (2004). Mobility support in IPv6. RFC 3775, IETF. Google Scholar
  2. 2.
    Deering, S. E. (1989). Host extensions for IP multicasting. RFC 1112, IETF. Google Scholar
  3. 3.
    Schmidt, T. C., Wählisch, M., & Fairhurst, G. (2008). Multicast mobility in MIPv6: problem statement and brief survey. IRTF internet draft, work in progress 05, MobOpts. Google Scholar
  4. 4.
    Holbrook, H., & Cain, B. (2006). Source-specific multicast for IP. RFC 4607, IETF. Google Scholar
  5. 5.
    Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., & Schooler, E. (2002). SIP: session initiation protocol. RFC 3261, IETF. Google Scholar
  6. 6.
    Schmidt, T. C., & Wählisch, M. (2008). Group conference management with SIP. In S. Ahson & M. Ilyas (Eds.), SIP handbook: services, technologies, and security (pp. 123–158). Boca Raton: CRC Press. Google Scholar
  7. 7.
    Perkins, C. E., & Johnson, D. B. (1996). Mobility support in IPv6. In MobiCom ’96: Proceedings of the 2nd annual international conference on mobile computing and networking (pp. 27–37). New York: ACM Press. CrossRefGoogle Scholar
  8. 8.
    Xylomenos, G., & Polyzos, G. C. (1997). IP multicast for mobile hosts. IEEE Communications Magazine, 35(1), 54–58. CrossRefGoogle Scholar
  9. 9.
    Romdhani, I., Bettahar, H., & Bouabdallah, A. (2006). Transparent handover for mobile multicast sources. In P. Lorenz & P. Dini (Eds.), Proceedings of the IEEE ICN’06. New York: IEEE Press. Google Scholar
  10. 10.
    Fenner, B., Handley, M., Holbrook, H., & Kouvelas, I. (2006). Protocol independent multicast—sparse mode (PIM-SM): protocol specification (Revised). RFC 4601, IETF. Google Scholar
  11. 11.
    Thaler, D. (2001). Supporting mobile SSM sources for IPv6. Proceedings of IETF meeting, individual. Google Scholar
  12. 12.
    Jelger, C., & Noel, T. (2002). Supporting mobile SSM sources for IPv6 (MSSMSv6). Internet draft, work in progress (expired) 00, individual. Google Scholar
  13. 13.
    Wählisch, M., & Schmidt, T. C. (2007). Exploring the routing complexity of mobile multicast—a semi-empirical study. In CoNEXT ’07: Proceedings of the 2007 ACM CoNEXT conference, Columbia University (pp. 1–2). New York: ACM Press. CrossRefGoogle Scholar
  14. 14.
    Chang, R. S., & Yen, Y. S. (2004). A multicast routing protocol with dynamic tree adjustment for mobile IPv6. Journal of Information Science and Engineering, 20, 1109–1124. Google Scholar
  15. 15.
    Vida, R., Costa, L., & Fdida, S. (2002). M-HBH—efficient mobility management in multicast. In Proceedings of NGC ’02 (pp. 105–112). New York: ACM Press. Google Scholar
  16. 16.
    Costa, L. H. M. K., Fdida, S., & Duarte, O. (2001). Hop by hop multicast routing protocol. In SIGCOMM ’01: Proceedings of the 2001 conference on applications, technologies, architectures, and protocols for computer communications (pp. 249–259). New York: ACM Press. CrossRefGoogle Scholar
  17. 17.
    O’Neill, A. (2002). Mobility management and IP multicast. Internet draft, work in progress (expired) 01, IETF. Google Scholar
  18. 18.
    Schmidt, T. C., & Wählisch, M. (2005). Extending SSM to MIPv6—problems, solutions and improvements. Computational Methods in Science and Technology, 11(2), 147–152. Selected Papers from TERENA Networking Conference, Poznań, May 2005. Google Scholar
  19. 19.
    Schmidt, T. C., & Wählisch, M. (2006). Morphing distribution trees—on the evolution of multicast states under mobility and an adaptive routing scheme for mobile SSM sources. Telecommunication Systems, 33(1–3), 131–154. CrossRefGoogle Scholar
  20. 20.
    Lee, H., Han, S., & Hong, J. (2006). Efficient mechanism for source mobility in source specific multicast. In K. Kawahara & I. Chong (Eds.), LNCS : Vol. 3961. Proceedings of ICOIN2006 (pp. 82–91). Berlin, Heidelberg: Springer. Google Scholar
  21. 21.
    Koodli, R. (2008). Mobile IPv6 fast handovers. RFC 5268, IETF. Google Scholar
  22. 22.
    Soliman, H., Castelluccia, C., Malki, K., & Bellier, L. (2008). Hierarchical mobile IPv6 (HMIPv6) mobility management. RFC 5380, IETF. Google Scholar
  23. 23.
    Schmidt, T. C., Wählisch, M., Christ, O., & Hege, G. (2008). AuthoCast—a mobility-compliant protocol framework for multicast sender authentication. Security and Communication Networks, 1(6), 495–509. CrossRefGoogle Scholar
  24. 24.
    Partridge, C., & Jackson, A. (1999). IPv6 router alert option. RFC 2711, IETF. Google Scholar
  25. 25.
    Arkko, J., Vogt, C., & Haddad, W. (2007). Enhanced route optimization for mobile IPv6. RFC 4866, IETF. Google Scholar
  26. 26.
    Varga, A. et al. (2007). The OMNeT++ discrete event simulation system.
  27. 27.
    Heckmann, O., Piringer, M., Schmitt, J., & Steinmetz, R. (2003). On realistic network topologies for simulation. In MoMeTools ’03: Proceedings of the ACM SIGCOMM workshop on models, methods and tools for reproducible network research (pp. 28–32). New York: ACM Press. CrossRefGoogle Scholar
  28. 28.
    Govindan, R., & Tangmunarunkit, H. (2000). Heuristics for internet map discovery. In Proceedings IEEE INFOCOM 2000 (Vol. 3, pp. 1371–1380). Piscataway: IEEE Press. Google Scholar
  29. 29.
    Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy mobile IPv6. RFC 5213, IETF. Google Scholar
  30. 30.
    Montavont, N., Wakikawa, R., Ernst, T., Ng, C., & Kuladinithi, K. (2008). Analysis of multihoming in mobile IPv6. Internet-draft, work in progress 05, IETF. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thomas C. Schmidt
    • 1
  • Matthias Wählisch
    • 1
    • 2
  • Maik Wodarz
    • 1
  1. 1.Department InformatikHAW HamburgHamburgGermany
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations