Telecommunication Systems

, 42:273 | Cite as

ILNP: mobility, multi-homing, localised addressing and security through naming

  • Randall Atkinson
  • Saleem BhattiEmail author
  • Stephen Hailes


Internet users seek solutions for mobility, multi-homing, support for localised address management (i.e. via NATs), and end-to-end security. Existing mobility approaches are not well integrated into the rest of the Internet architecture, instead primarily being separate extensions that at present are not widely deployed. Because the current approaches to these issues were developed separately, such approaches often are not harmonious when used together. Meanwhile, the Internet has a number of namespaces, for example the IP address or the Domain Name. In recent years, some have postulated that the Internet’s namespaces are not sufficiently rich and that the current concept of an address is too limiting. One proposal, the concept of separating an address into an Identifier and a separate Locator, has been controversial in the Internet community for years. It has been considered within the IETF and IRTF several times, but always was rejected as unworkable. This paper takes the position that evolving the naming in the Internet by splitting the address into separate Identifier and Locator names can provide an elegant integrated solution to the key issues listed above, without changing the core routing architecture, while offering incremental deployability through backwards compatibility with IPv6.


Addressing Mobility Multi-homing Security Identifier Locator Internet protocol 


  1. 1.
    Aboba, B., & Dixon, W. J. (2004). IPsec-Network address translation (NAT) compatibility requirements. RFC 3715, IETF. Google Scholar
  2. 2.
    Arends, R., Austein, R., Larson, M., Massey, D., & Rose, S. (2005). DNS security introduction and requirements. RFC 4033, IETF. Google Scholar
  3. 3.
    Balakrishnan, H., Lakshminarayanan, K., Ratnasamy, S., Shenker, S., Stoica, I., & Walfish, M. (2004). A layered naming architecture for the Internet. ACM Computer Communications Review, 34(4), 343–352. CrossRefGoogle Scholar
  4. 4.
    Cheriton, D., & Gritter, M. (2000). TRIAD: A new next generation Internet architecture. Technical report, Stanford University, Stanford, CA, USA. Google Scholar
  5. 5.
    Chiappa, N. (1994). IPng technical requirements of the nimrod routing and addressing architecture. RFC 1753, IETF. Google Scholar
  6. 6.
    Clark, D., Braden, R., Falk, A., & Pingali, V. (2003). FARA: Reorganizing the addressing architecture. ACM Computer Communications Review, 33(4), 313–321. CrossRefGoogle Scholar
  7. 7.
    Cohen, D. (1978). On names, addresses, and routings. Internet experiment note (IEN) 23, ARPA Network Working Group. Google Scholar
  8. 8.
    Crowcroft, J., Hand, S., Mortier, R., Roscoe, T., & Warfield, A. (2003). Plutarch: An argument for network pluralism. In FDNA 2003: Proceedings of the ACM SIGCOMM workshop on future directions in network architecture (pp. 258–266). New York: ACM Press. CrossRefGoogle Scholar
  9. 9.
    Eastlake, D., Schiller, J., & Crocker, S. (2005). Randomness requirements for security. RFC 4086, IETF. Google Scholar
  10. 10.
    Egevang, K., & Francis, P. (1994). The IP network address translator (NAT). RFC 1631, IETF. Google Scholar
  11. 11.
    Ferguson, P., & Senie, D. (1998). Network Ingress filtering: defeating denial of service attacks which employ IP source address spoofing. RFC 2267, IETF. Google Scholar
  12. 12.
    Francis, P., & Gummadi, R. (2001). IPNL: A NAT-extended Internet architecture. In Proceedings of ACM SIGCOMM 2001 (pp. 69–80). New York: ACM Press. Google Scholar
  13. 13.
    Holdrege, M., & Srisuresh, P. (2001). Protocol complications with the IP network address translator. RFC 3027, IETF. Google Scholar
  14. 14.
    Huttunen, A., Swander, B., Volpe, V., DiBurro, L., & Stenberg, M. (2005). UDP encapsulation of IPsec ESP packets. RFC 3948, IETF. Google Scholar
  15. 15.
    IEEE. (2007). Guidelines for 64-bit global identifier (EUI-64). Tutorial, IEEE. Google Scholar
  16. 16.
    Johnson, D. B., Perkins, C. E., & Arkko, J. (2004). Mobility support in IPv6. RFC 3775, IETF. Google Scholar
  17. 17.
    Jonsson, A., Folke, M., & Ahlgren, B. (2003). The split naming/forwarding network architecture. In Proceedings of 1st Swedish national computer networking workshop, Arlandastad, Sweden, September 2003. Google Scholar
  18. 18.
    Liu, C., & Albitz, P. (2006). DNS and BIND (5th ed.). Sebastopol: O’Reilly and Associates. Google Scholar
  19. 19.
    Macker, J. (2003). Interoperable networks for secure communications, task 6, phase 1. Final report INSC-TASK6, North Atlantic Treaty Organisation (NATO). Google Scholar
  20. 20.
    Meyer, D., Zhang, L., & Fall, K. (2007). Report from the IAB workshop on routing and addressing. RFC 4984, IAB. Google Scholar
  21. 21.
    Moore, N. (2006). Optimistic duplicate address detection for IPv6. RFC 4429, IETF. Google Scholar
  22. 22.
    Moskowitz, R., & Nikander, P. (2006). Host identity protocol architecture. RFC 4423, IETF. Google Scholar
  23. 23.
    O’Dell, M. (1996). 8+8—An alternate addressing architecture for IPv6. Internet-draft draft-odell-8+8-00.txt, IETF. Google Scholar
  24. 24.
    Perkins, C. E. (Ed.) (1996). IP mobility support. RFC 2002, IETF. Google Scholar
  25. 25.
    Saltzer, J. H. (1993). On the naming and binding of network destinations. RFC 1498, IETF. Google Scholar
  26. 26.
    Schmid, S., Eggert, L., Brunner, M., & Quittek, J. (2005). TurfNet: An architecture for dynamically composable networks. In Lecture Notes in Computer Science (Vol. 3457, pp. 94–114). Springer, Berlin Google Scholar
  27. 27.
    Shoch, J. (1978). Inter-network naming, addressing, and routing. Internet experiment note 19, ARPA Network Working Group. Google Scholar
  28. 28.
    Stoica, I., Adkins, D., Zhuang, S., Shenker, S., & Surana, S. (2002). Internet indirection infrastructure. ACM Computer Communications Review, 32(4), 73–86. CrossRefGoogle Scholar
  29. 29.
    Turanyi, Z., Valko, A., & Campbell, A. T. (2003). 4+4: An architecture for evolving the Internet address space back toward transparency. ACM Computer Communications Review, 33(5), 43–54. CrossRefGoogle Scholar
  30. 30.
    Wellington, B. (2000). Secure domain name system (DNS) dynamic update. RFC 3007, IETF. Google Scholar
  31. 31.
    Weston, J. (2006). Interoperable networks for secure communications, task 3. Final report INSC-TASK3, North Atlantic Treaty Organisation (NATO). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Randall Atkinson
    • 1
  • Saleem Bhatti
    • 2
    Email author
  • Stephen Hailes
    • 3
  1. 1.Extreme NetworksRTPUSA
  2. 2.School of Computer ScienceUniversity of St AndrewsSt AndrewsUK
  3. 3.Department of Computer ScienceUniversity College London (UCL)LondonUK

Personalised recommendations