Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A cross-layer congestion and contention window control scheme for TCP performance improvement in wireless LANs

  • 185 Accesses

  • 9 Citations

Abstract

Neither the current TCP protocol nor the standard backoff algorithm of IEEE 802.11 protocol is able to distinguish corruption loss from congestion or collision loss. Hence, high transmission errors and a varying latency inherent in wireless channel would have a seriously adverse effect on the performance of TCP. In this paper, we propose a novel and pragmatic cross-layer approach with joint congestion and contention window control scheme to improve the performance of TCP in IEEE 802.11 wireless environments. In addition to theoretical analysis, simulations are conducted to evaluate the proposed scheme. As it turns out, our design indeed provides a more efficient solution for frequent transmission loss and enables TCP to distinguish between congestion loses and transmission errors, thus to take proper remedial actions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    IEEE Standard 802.11. (1999). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, pp. 1–528.

  2. 2.

    Postel, J. B. (1981). Transmission Control Protocol. RFC 793, pp. 1–85.

  3. 3.

    Wu, H., Peng, Y., Long, K., Cheng, S., & Ma, J. (2002). Performance of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and enhancement. IEEE INFOCOM, pp. 599–607.

  4. 4.

    Vardakas, J. S., Sidiropoulos, M. K., & Logothetis, M. D. (2008). Performance behaviour of IEEE 802.11 distributed coordination function. IET Circuits, Devices & Systems, 2(1), 50–59.

  5. 5.

    Gilbert, E. N. (1960). Capacity of a burst-noise channel. Bell System Technical, 69, 1253–1265.

  6. 6.

    Kliazovich, D., & Granelli, F. (2006). Cross-layer congestion control in ad hoc wireless networks. Ad Hoc Networks, 4(6), 687–708.

  7. 7.

    Jiang, H., Zhuang, W., & Shen, X. (2005). Cross-layer design for resource allocation in 3G wireless networks and beyond. IEEE Communication Magazine, 43(12), 120–126.

  8. 8.

    Xiao, Y., Shan, X., & Ren, Y. (2005). Cross-layer design improves tcp performance in multihop ad hoc networks. IEICE Transactions on Communications, E88-B(8), 3375–3382.

  9. 9.

    Lochert, C., Scheuermann, B., & Mauve, M. (2007). A survey on congestion control for mobile ad hoc networks. Wireless Communications and Mobile Computing, 7(5), 655–676.

  10. 10.

    Yang, X., & Nitin, H. V. (2006). A wireless MAC protocol using implicit pipelining. IEEE Transactions on Mobile Computing, 5(3), 258–273.

  11. 11.

    Colandairaj, J., Irwin, G. W., & Scanlon, W. G. (2007). Wireless networked control systems with QoS-based sampling. IET Control Theory & Applications, 1(1), 430–438.

  12. 12.

    Paxson, V., Allman, M., & Stevens, W. (1999). TCP congestion control. RFC, 2581, 1–14.

  13. 13.

    Floyd, S., & Henderson, T. (1999). The NewReno modification to TCP’s fast recovery algorithm. RFC, 2582, 1–12.

  14. 14.

    Bakre, A. V., & Badrinath, B. R. (1997). Implementation and performance evaluation of indirect TCP. IEEE Transactions on Computers, 46(3), 260–278.

  15. 15.

    Balakrishnan, H., Seshan, S., Amir, E., & Katz, R. H. (1995). Improving TCP/IP performance over wireless networks. ACM MOBICOM, pp. 2–15.

  16. 16.

    Balakrishnan, H., Padmanabhan, V. N., Seshan, S., & Katz, R. H. (1997). A comparison of mechanisms for improving TCP performance over wireless links. IEEE/ACM Transactions on Networking, 5(6), 756–769.

  17. 17.

    Balakrishnan, H., & Katz, R. H. (1998). Explicit loss notification and wireless web performance. IEEE GLOBECOM, pp. 172–179.

  18. 18.

    Liu, C., & Jain, R. (2003). Approaches of wireless TCP enhancement and a new proposal based on congestion coherence. HICSS, pp. 1–10.

  19. 19.

    Floyd, S. (1994). TCP and explicit congestion notification. ACM Computer Communication Review, 24(5), 10–23.

  20. 20.

    Kappes, Yi.S., Garg, M., Deng, S., Kesidis, X., & Das, C. R. (2004). Proxy-RED: an AQM scheme for wireless local area networks, IEEE ICCCN, pp. 460–465.

  21. 21.

    Cheng, R. S., & Lin, H. T. (2008). A cross-layer design for TCP end-to-end performance improvement in multi-hop wireless networks. Journal of Computer Communications, 31, 3145–3152.

  22. 22.

    Dimitri, B., & Robert, G., (1992). Data networks, 2nd edn. pp. 1–556. New York: Prentice Hall.

  23. 23.

    Network simulator, NS-2. http://www.isi.edu/nsnam/ns/.

  24. 24.

    Gilbert, E. N. (1960). Capacity of a burst-noise channel. Bell System Technical, 69, 1253–1265.

  25. 25.

    Eckhardt, D. A., & Steenkiste, P. (1996). Measurement and analysis of the error characteristics of an in-building wireless network. ACM SIGCOMM, pp. 243–254.

  26. 26.

    Nguyen, G. T., Katz, R., & Noble, B. (1996). A trace-based approach for modeling wireless channel behavior. Winter Simulation Conference, pp. 597–604.

Download references

Author information

Correspondence to Der-Jiunn Deng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deng, D., Cheng, R., Chang, H. et al. A cross-layer congestion and contention window control scheme for TCP performance improvement in wireless LANs. Telecommun Syst 42, 17–27 (2009). https://doi.org/10.1007/s11235-009-9166-9

Download citation

Keywords

  • TCP
  • Congestion control
  • Contention window
  • IEEE 802.11
  • Cross-layer design