Advertisement

Telecommunication Systems

, Volume 41, Issue 2, pp 65–76 | Cite as

Efficient error resilient algorithm for H.264/AVC: mobility management in wireless video streaming

  • Kostas E. Psannis
  • Yutaka Ishibashi
Article

Abstract

The H.264/AVC standard introduces enhanced error robustness capabilities enabling resilient and reliable transmission of compressed video signals over wireless lossy packet networks. Those robustness capabilities are achieved by integrating some new error resilience tools that are essential for a proper delivery of real-time video services. Those tools include the Intra Refreshing (IR), Arbitrary Slice Ordering (ASO), Sequence Picture Parameter Sets (PPS), Redundant Slices (RS) tools and Flexible Macroblock Ordering (FMO). This paper presents an error resilient algorithm in wireless H.264/AVC streaming. The proposed method merges Reference Frame Selection (RFS), Intra Redundancy Slice and Adaptive Intra Refreshment techniques in order to prevent temporal error propagation in error-phone wireless video streaming. The coding standards only specify the decoding process and the bitstream syntax to allow considerable flexibility for the designers to optimize the encoder for coding performance improvement and complexity reduction. Performance evaluations demonstrate that the proposed encoding algorithm outperforms the conventional H.264/AVC standard. Both subjective and objective visual quality comparative study has been also carried out in order to validate the proposed approach. The proposed method can be used and integrated into H264/AVC without violating the standard.

Keywords

Error resilient Encoding and transmission algorithm Wireless video H.264/AVC Smoothness of the video 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Psannis, K., & Ishibashi, Y. (2008). Efficient flexible macroblock ordering technique. IEICE Transactions on Communications, E91-B(08), 2692–2701. CrossRefGoogle Scholar
  2. 2.
    Psannis, K., Hadjinicolaou, M. G., & Krikelis, A. (2006). MPEG-2 streaming of full interactive content. IEEE Transactions on Circuits and Systems for Video Technology, 16(2), 280–285. CrossRefGoogle Scholar
  3. 3.
    Psannis, K., Ishibashi, Y., & Hadjinicolaou, M. G. (2007). QoS for wireless interactive multimedia streaming. In Proceedings of the 3rd ACM workshop on QoS and security for wireless and mobile networks 2007, Chania, Crete Island, Greece (pp. 168–171) October 22–24, 2007. Google Scholar
  4. 4.
    Psannis, K., Hadjinicolaou, M., & Ishibashi, Y. (2006). Efficient support of wireless video multicast services in 3G and beyond, advances in computer, information, and systems sciences, and engineering. In K. Elleithy, T. Sobh, A. Mahmood, M. Iskander & M. Karim (Eds.), Springer signals and communications, ISBN-13: 978-1-4020-5260-6 (pp. 121–127). Berlin: Springer. Google Scholar
  5. 5.
    Advanced Video Coding for Generic Audiovisual Services (2007). ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, Version 1: May 2003, Version 2: May 2004, Version 3: Mar. 2005, Version 4: Sept. 2005, Version 5 and Version 6: June 2006, Version 7: Apr. 2007, Version 8 (including SVC extension): Consented in July 2007. Google Scholar
  6. 6.
    Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2000). Equation-based congestion control for unicast applications. In Proc. ACM SIGCOMM, Stockholm, Sweden (pp. 43–56) Aug. 2000. Google Scholar
  7. 7.
    Floyd, S., & Fall, K. (1999). Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Transactions on Networking, 7(4), 458–472. CrossRefGoogle Scholar
  8. 8.
    Chen, M., & Zakhor, A. (2006). Multiple TFRC connections based rate control for wireless networks. IEEE Transactions on Multimedia, 8(5), 1045–1062. CrossRefGoogle Scholar
  9. 9.
    Song, H., & Jay Kuo, C.-C. (2004). A region-based H. 263+ codec and its rate control for low VBR video. IEEE Transactions Multimedia, 6(3), 489–500. CrossRefGoogle Scholar
  10. 10.
    Lin, C.-H., & Wu, J.-L. (1997). Content-based rate control scheme for very low bit-rate video coding. IEEE Transactions Consumer Electronics, 43(2), 123–133. CrossRefGoogle Scholar
  11. 11.
    Aramvith, S., Kortrakulkij, H., Tancharoen, D., & Jitapankul, S. (2002). Joing source-channel coding using simplified block-based segmentation and content-based rate-control for wireless video transport. In Proc. int. conf. information technology: coding and computing (ITCC) 2002, Las Vegas (pp. 71–76) Apr. 2002. Google Scholar
  12. 12.
    Lin, C.-W., Chang, Y.-J., & Chen, Y.-C. (2003). A low-complexity face-assisted coding scheme for low-bit-rate video telephony. IEICE Transactions on Information and Systems, E86-D(1), 101–108. Google Scholar
  13. 13.
    Sun, Y., Ahmad, I., Li, D., & Zhang, Y.-Q. (2006). Region-based rate control and bit allocation for wireless video transmission. IEEE Transactions on Multimedia, 8(1), 1–10. CrossRefGoogle Scholar
  14. 14.
    Melo, C. A. V., & Fonseca, N. L. S. (2004). An envelope process s for multi-fractal traffic modeling. In Proc. IEEE int. conf. communication (ICC) 2004 (Vol. 4, pp. 2168–2173) June 20–24, 2004. Google Scholar
  15. 15.
    Erramilli, A., Narayan, O., Neidhardt, A., & Saniee, I. (2001). Multi-scaling models of TCP/IP and sub-frame VBR video traffic. Journal of Communications and Networks, 3(4), 383–395. Google Scholar
  16. 16.
    Kang, S. H., & Zakhor, A. (2005). Effective bandwidth based scheduling for streaming multimedia. IEEE Transactions on Multimedia, 7(6), 1139–1148. CrossRefGoogle Scholar
  17. 17.
    Kwon, S.-K., Tamhankar, A., & Rao, K. R. (2006). Overview of H.264/MPEG-4 part 10. Elsevier Journal of Visual Communication and Image Representation, 17(2), 186–216. CrossRefGoogle Scholar
  18. 18.
    Lambert, P., De Neve, W., Dhondt, Y., & Van de Walle, R. (2006). Flexible macroblock ordering in H.264/AVC. Elsevier Journal of Visual Communication and Image Representation, 17(2), 358–375. CrossRefGoogle Scholar
  19. 19.
    Calafate, C. M., & Malumbres, M. P. (2003). Testing the H.264 error-resilience on wireless ad-hoc networks. Paper presented at the EURASIP video/image processing and multimedia communications conference, 2003. Google Scholar
  20. 20.
    Kim, M., Lee, S.-W., & Kim, S.-D. (2005). Error resilient texture coding scheme for wireless video transmission based on coefficient sampling and interleaving. SPIE Optical Engineering, 44. Google Scholar
  21. 21.
    Katz, B., Greenberg, S., Yarkoni, N., Blaunstien, N., & Giladi, R. (2007). New error-resilient scheme based on FMO and dynamic redundant slices allocation for wireless video transmission. IEEE Transactions on Broadcasting, 53(1), 308–329. CrossRefGoogle Scholar
  22. 22.
    Ogunfunmi, T., & Huang, W. C. (2005). A new flexible macro block ordering with 3D MBAmap for H.264/AVC. In IEEE ISCAS 2005. Google Scholar
  23. 23.
    Rane, S., & Girod, B. (2005). Systematic lossy error protection of video based on H.264/AVC redundant slices. In Proc. visual communication and image processing VCIP-2006, San Jose, CA, Jan. 2005. Google Scholar
  24. 24.
    Wang, Y.-K., Hannuksela, M. M., & Gabbouj, M. (2003). Error resilient video coding using unequally protected key pictures. In Proc. international workshop VLBV03, Sep. 2003. Google Scholar
  25. 25.
    Baccichet, P., Rane, S., & Girod, B. (2006). Systematic lossy error protection based on H.264/AVC redundant slices and flexible macroblock ordering. In Proc. 15th international packet videoworkshop, Hangzhou, P.R. China, Apr. 2006. Google Scholar
  26. 26.
    Liu, H., Zhang, W., & Yang, X. (2006). Error-resilience packet scheduling for low bit-rate video streaming over wireless channels. In IEEE international symposium on circuits and systems, 2006. Google Scholar
  27. 27.
    Koumaras, H., Kourtis, A., Lin, C.-H., & Shieh, C.-K. (2007). A theoretical framework for end-to-end video quality prediction of MPEG-based sequences. In The third inter. conf. on networking and services—ICNS07, Athens, Greece, June 19–25, 2007. Google Scholar
  28. 28.
    Ziviani, A., Wolfinger, B. E., de Rezende, J. F., Carlos, O., Duarte, M. B., & Fdida, S. (2005). Joint adoption of QoS schemes for MPEG streams. In Multimedia tools and applications, April, 2005. Google Scholar
  29. 29.
    Liang, Y. J., Apostolopoulos, J. G., & Girod, B. (2003). Analysis of packet loss for compressed video: does burst-length matter? In IEEE international conference on acoustics, speech, and signal processing (pp. 684–687) 2003. Google Scholar
  30. 30.
    Apostolopoulos, J. G. (2001). Reliable video communication over lossy packet networks using multiple state encoding and path diversity. In VCIP (pp. 392–409). Bellingham: SPIE Press. Google Scholar
  31. 31.
    Hu, J., Choudhury, S., & Gibson, J. D. (2007). H.264 Video over 802.11a WLANs with multipath fading: parameter interplay and delivered quality. In IEEE international conference on multimedia and expo (pp. 1790–1793) 2007. Google Scholar
  32. 32.
    Guha, R. K., & Sarkar, S. (2006). Characterizing temporal SNR variation in 802.11 networks. In IEEE wireless communications and networking conference (Vol. 3, pp. 1408–1413) 2006. Google Scholar
  33. 33.
    Koumaras, H., Kourtis, A., & Martakos, D. (2005). Evaluation of video quality based on objectively estimated metric. Journal of Communications and Networking, 7(3), 235–242. Google Scholar
  34. 34.
    Koumaras, H., Kourtis, A., Martakos, D., & Lauterjung, J. (2007). Quantified PQoS assessment based on fast estimation of the spatial and temporal activity level. Multimedia Tools and Applications, 34(3), 355–374. CrossRefGoogle Scholar
  35. 35.
    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. CrossRefGoogle Scholar
  36. 36.
    H.264/AVC Software Coordination (2009). Software version: JM 13.0. http://iphome.hhi.de/suehring/tml/.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Technology ManagementUniversity of MacedoniaThessalonikiGreece
  2. 2.Department of Scientific and Engineering SimulationNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations