Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Tabu search based algorithms for bandwidth-delay-constrained least-cost multicast routing

  • 83 Accesses

  • 20 Citations


The advent of various real-time multimedia applications in high-speed networks creates a need for quality of service (QoS) based multicast routing. The Steiner tree problem, is a well-known NP-complete problem, provides the mathematical structure behind multicast communications. Two important QoS constraints are the bandwidth constraint and the end-to-end delay constraint. In this paper, we propose various algorithms to solve the bandwidth-delay-constrained least-cost multicast routing problem based on Tabu Search (TS), addressing issues of the selected initial solution and move type as two major building blocks in short-term memory version of Tabu Search and longer-term memory with associated intensification and diversification strategies as advanced Tabu Search techniques. We evaluate the performance and efficiency of the proposed TS-based algorithms in comparison with other existing TS-based algorithms and heuristics on a variety of random generated networks with regard to total tree cost. Finally we identify the most efficient algorithm uncovered by our testing.

This is a preview of subscription content, log in to check access.


  1. 1.

    Hakimi, S. L. (1971). Steiner problem in graphs and its implications. Networks, 1, 113–133.

  2. 2.

    Hwang, F. K., Richards, D. S., & Winter, P. (1992). The Steiner tree problem. Amsterdam: Elsevier Science/North-Holland.

  3. 3.

    Sun, Q., & Langendörfer, H. (1998). An efficient delay-constrained multicast routing algorithm. Journal of High-Speed Networks, 7(1), 43–55.

  4. 4.

    Guo, L., & Matta, I. (1999). QDMR: an efficient QoS dependent multicast routing algorithm. In RTAS’99: proceedings of the fifth IEEE real-time technology and applications symposium (pp. 213–222). Vancouver, BC, Canada. Washington: IEEE Comput. Soc.

  5. 5.

    Rouskas, G. N., & Baldine, I. (1997). Multicast routing with end-to-end delay and delay variation constraints. IEEE Journal on Selected Areas in Communications, 15(3), 346–356.

  6. 6.

    Garey, M. R., & Johnson, D. S. (1971). Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman.

  7. 7.

    Kou, L., Markowsky, G., & Berman, L. (1981). A fast algorithm for Steiner trees. Acta Informatica, 15, 141–145.

  8. 8.

    Rayward-Smith, V. (1983). The computation of nearly minimal Steiner trees in graphs. International Journal of Mathematical Education in Science and Technology, 14(1), 15–23.

  9. 9.

    Takahashi, H., & Matsuyama, A. (1980). An approximate solution for the Steiner problem in graphs. Mathematica Japonica, 22(6), 573–577.

  10. 10.

    Kompella, V. P., Pasquale, J. C., & Polyzos, G. C. (1993). Multicast routing for multimedia communication. IEEE/ACM Transactions on Networking, 1(3), 286–292.

  11. 11.

    Zhu, Q., Parsa, M., & Garcia-Luna-Aceves, J. J. (1995). A source-based algorithm for delay-constrained minimum-cost multicasting. In INFOCOM ’95: proceedings of the fourteenth annual joint conference of the IEEE computer and communication societies (Vol. 1, pp. 377–385). Washington: IEEE Comput. Soc.

  12. 12.

    Widyono, R. (1994). The design and evaluation of routing algorithms for realtime channels. Technical report TR-94-024, Tenet Group, Department of EECS, University of California at Berkeley.

  13. 13.

    Raghavan, S., Manimaran, G., & Siva Ram Murthy, C. (1999). A rearrangeable algorithm for the construction delay-constrained dynamic multicast trees. IEEE/ACM Transactions on Networking, 7(4), 514–529.

  14. 14.

    Salama, H. F., Reeves, D. S., & Viniotis, Y. (1997). Evaluation of multicast routing algorithms for real-time communication on high-speed networks. IEEE Journal on Selected Areas in Communications, 15(3), 332–345.

  15. 15.

    Grabowski, J., & Wodecki, M. (2004). A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion. Computers & Operations Research, 31(11), 1891–1909.

  16. 16.

    Fiechter, C. N. (1994). A parallel tabu search algorithm for large traveling salesman problems. Discrete Applied Mathematics and Combinatorial Operations Research and Computer Science, 51, 243–267.

  17. 17.

    Hesser, J., Männer, R., & Stucky, O. (1989). Optimization of Steiner trees using genetic algorithms. In Proceedings of the third international conference on genetic algorithms (pp. 231–236). George Mason University, Fairfax, VA. San Francisco: Morgan Kaufmann.

  18. 18.

    Leung, Y., Li, G., & Xu, Z. B. (1998). A genetic algorithm for the multiple destination routing problems. IEEE Transactions on Evolutionary Computation, 2(4), 150–161.

  19. 19.

    Haghighat, A. T., Faez, K., Dehghan, M., Mowlaei, A., & Ghahremani, Y. (2003). GA-based heuristic algorithms for QoS based multicast routing. Knowledge-Based Systems, 16(5–6), 305–312.

  20. 20.

    Haghighat, A. T., Faez, K., Dehghan, M., Mowlaei, A., & Ghahremani, Y. (2004). GA-based heuristic algorithms for bandwidth-delay-constrained least-cost multicast routing. Computer Communications, 27(1), 111–127.

  21. 21.

    Skorin-Kapov, N., & Kos, M. (2003). The application of Steiner trees to delay constrained multicast routing: a tabu search approach. In ConTEL 2003: Proceedings of the seventh international conference on telecommunications (pp. 443–448). Zagreb, Croatia. New York: IEEE Press.

  22. 22.

    Prim, R. (1957). Shortest Connection Networks and Some Generalizations. Bell System Technical Journal, 36, 1389–1401.

  23. 23.

    Youssef, H., Al-Mulhem, A., Sait, S. M., & Tahir, M. A. (2002). QoS-driven multicast tree generation using tabu search. Computer Communications, 25(11–12), 1140–1149.

  24. 24.

    Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische Mathematik, 1, 269–271.

  25. 25.

    Wang, H., Wang, J., Wang, H., & Sun, Y. M. (2004). TSDLMRA: an efficient multicast routing algorithm based on tabu search. Journal of Network and Computer Applications, 27(2), 77–90.

  26. 26.

    Zhang, B., & Mouftah, H. T. (2002). A destination-driven shortest path tree algorithm. In ICC 2002: Proceedings of the IEEE international conference on communications (pp. 2258–2262). New York: IEEE Press.

  27. 27.

    Yen, J. Y. (1971). Finding the K-shortest loopless paths in a network. Management Science, 17(11), 712–716.

  28. 28.

    Glover, F., & Laguna, M. (1997). Tabu search. Dordrecht: Kluwer Academic.

  29. 29.

    Gendreau, M., Larochelle, J. F., & Sansò, B. (1999). A tabu search heuristic for the Steiner tree problem. Networks, 34(2), 162–172.

  30. 30.

    Xu, J., Chiu, S. Y., & Glover, F. (1996). Probabilistic tabu search for telecommunications network design. Combinatorial Optimization: Theory and Practice, 1(1), 69–94.

  31. 31.

    Glover, F. (1989). Tabu search—part I. INFORMS Journal on Computing, 1(3), 190–206.

  32. 32.

    Garcia-Luna-Aceves, J. J. (1992). Reliable broadcast of routing information using diffusing computations. In GLOBECOM ’92: IEEE global telecommunication conference (pp. 615–621). Orlando, FL. New York: IEEE Press.

  33. 33.

    Garcia-Luna-Aceves, J. J., & Behrens, J. (1995). Distributed, scalable routing based on vectors of link states. IEEE Journal on Selected Areas in Communications, 13(8), 1383–1395.

  34. 34.

    Bertsekas, D., & Gallager, R. (1992). Data networks. Englewood Cliffs: Prentice-Hall.

  35. 35.

    Jimenez, V. M., & Marzal, A. (1999). Computing the K-shortest paths: a new algorithm and an experimental comparison. In Lecture notes in computer science (Vol. 1668, pp. 15–29). Berlin: Springer.

  36. 36.

    Xu, J., Chiu, S. Y., & Glover, F. (1998). Optimizing a ring-based private line telecommunication network using tabu search. Management Science, 45(3), 330–345.

  37. 37.

    Moore, E. F. (1959). The shortest path through a maze. In Proceedings of the international symposium on theory of switching (pp. 285–292). Cambridge: Harvard University Press.

  38. 38.

    Glover, F., Laguna, M., & Marti, R. (2000). Fundamentals of scatter search and path relinking. Control and Cybernetics, 29(3), 653–684.

Download references

Author information

Correspondence to Nejla Ghaboosi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghaboosi, N., Haghighat, A.T. Tabu search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Telecommun Syst 34, 147–166 (2007).

Download citation


  • Tabu search
  • Intensification
  • Diversification
  • Constrained Steiner tree
  • Multicast routing
  • Quality of service