Telecommunication Systems

, Volume 33, Issue 1–3, pp 131–154 | Cite as

Morphing distribution trees—On the evolution of multicast states under mobility and an adaptive routing scheme for mobile SSM sources

Article

Abstract

Source Specific Multicast (SSM) promises a wider dissemination of group distribution services than Any Source Multicast, as it relies on simpler routing strategies with reduced demands on the infrastructure. However, SSM is designed for á priori known and changeless addresses of multicast sources and thus withstands any easy extension to mobility. Up until now only few approaches arose from the Internet research community, leaving SSM source mobility as a major open problem. The purpose of this paper is twofold. At first we analyze characteristic properties of multicast shortest path trees evolving under source mobility. Analytically and by stochastic simulations we derive measures on the complexity of SSM routing under source mobility. At second we introduce a straightforward extension to multicast routing for transforming (morphing) source specific delivery trees into optimal trees rooted at a relocated source. All packet forwarding is done free of tunneling. Multicast service disruption and signaling overhead for the algorithms remain close to minimal. Further on we evaluate the proposed scheme using both, analytical estimates and stochastic simulations based on a variety of real-world Internet topology data. Detailed comparisons are drawn to bi-directional tunneling, as well as to proposals on concurrent distribution trees.

Keywords

Multicast routing protocols Mobile source specific m ulticast Shortest path trees IPv6 mobility management Internet measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Adjih, L. Georgiadis, P. Jacquet and W. Szpankowski, Multicast tree structure and the power law, IEEE Transact. Information Theory 52(4) (2006) 1508–1521.CrossRefGoogle Scholar
  2. 2.
    T. Aura, Cryptographically generated Addresses (CGA), RFC 3972, IETF (2005).Google Scholar
  3. 3.
    S. Bhattacharyya, An overview of Source-Specific Multicast (SSM), RFC 3569, IETF (2003).Google Scholar
  4. 4.
    R.C. Chalmers and K.C. Almeroth, On the topology of multicast trees, IEEE/ACM Trans. Netw. 11(1) (2003) 153–165.CrossRefGoogle Scholar
  5. 5.
    R.-S. Chang and Y.-S. Yen, A multicast Routing Protocol with Dynamic Tree Adjustment for Mobile IPv6, Journ. Information Science and Engineering 20 (2004) 1109–1124.Google Scholar
  6. 6.
    J.C.I. Chuang and M.A. Sirbu, Pricing multicast communication: A cost-based approach, Telecommunication Systems 17(3) (2001) 281–297. Presented at the INET’98, Geneva, Switzerland, July 1998.CrossRefGoogle Scholar
  7. 7.
    S.E. Deering, Host extensions for IP multicasting, RFC 1112, IETF (1989).Google Scholar
  8. 8.
    B. Fenner, M. Handley, H. Holbrook and I. Kouvelas, Protocol independent Multicast—sparse Mode (PIM-SM): protocol Specification (Revised), Internet Draft—Work in Progress 12, IETF (2006).Google Scholar
  9. 9.
    R. Govindan and H. Tangmunarunkit, Heuristics for internet map discovery, in: Procedures. IEEE INFOCOM 2000, Vol. 3, IEEE Computer Society, Tel Aviv, Israel (2000) pp. 1371–1380.Google Scholar
  10. 10.
    O. Heckmann, M. Piringer, J. Schmitt and R. Steinmetz, On realistic Network Topologies for Simulation, in: MoMeTools ’03: Proceedings of the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research, ACM Press, New York, NY, USA (2003) pp. 28–32.Google Scholar
  11. 11.
    H. Holbrook and B. Cain, Source-specific Multicast for IP, Internet Draft—Work in Progress 07, IETF. ftp.rfc-editor.org/in-notes/internet-drafts/draft-ietf-ssm% -arch-07.txt (2005).Google Scholar
  12. 12.
    M. Janic and P. Van Mieghem, On properties of multicast routing trees, Int. J. Commun. Syst. 19(1) (2006) 95–114.CrossRefGoogle Scholar
  13. 13.
    C. Jelger and T. Noel, Supporting mobile SSM sources for IPv6 (MSSMSv6), Internet Draft—Work in Progress (expired) 00, individual (2002).Google Scholar
  14. 14.
    D.B. Johnson, C. Perkins and J. Arkko, Mobility Support in IPv6, RFC 3775, IETF (2004).Google Scholar
  15. 15.
    M. Kellil, I. Romdhani, H.-Y. Lach, A. Bouabdallah and H. Bettahar, Multicast receiver and sender access control and its applicability to mobile IP environments: A survey, IEEE Comm. Surveys & Tutorials 7(2) (2005) 46–70.CrossRefGoogle Scholar
  16. 16.
    R. Koodli, Fast handovers for Mobile IPv6, RFC 4068, IETF (2005).Google Scholar
  17. 17.
    G. Kurup and Y.A. Sekercioglu, Source specific Multicast (SSM) for MIPv6: A survey of Current State of Standardisation and Research, in: Proceedings of Australian Telecommunications, Networks and Applications Conference (ATNAC 2003), Melbourne (2003). http://atnac2003.atcrc.com/ORALS/KURUP.pdfGoogle Scholar
  18. 18.
    H. Lee, S. Han and J. Hong, Efficient mechanism for source mobility in source specific multicast, in: K. Kawahara and I. Chong, Eds., Proceedings of ICOIN2006, Vol. 3961 of LNCS, SpringerVerlag, Berlin, Heidelberg (in press) (2006).Google Scholar
  19. 19.
    D. Magoni, nem: A software for Network Topology Analysis and Modeling, in: Proceedings of the 10th IEEE Symposium on Modeling, Analysis and Simulation of Computer & Telecomm. Systems (MASCOTS’02), IEEE Computer Society, Fort Worth, Texas, USA (2002) pp. 364–371.Google Scholar
  20. 20.
    D. Magoni and J.-J. Pansiot, Internet topology Modeler Based on Map Sampling, in: Proceedings of the 7th IEEE Symposium on Computers and Communications, IEEE Computer Society, Taomina, Italy (2002) pp. 1021–1027.Google Scholar
  21. 21.
    MaxMind LLC (2006), GeoIP, http://www.maxmind.com.Google Scholar
  22. 22.
    A. Medina, A. Lakhina, I. Matta and J. Byers, ’BRITE: Boston university Representative Internet Topology gEnerator,’ http://www.cs.bu.edu/brite/ (2005).Google Scholar
  23. 23.
    A. O’Neill, (2002) Mobility Management and IP Multicast, Internet Draft—Work in Progress (expired) 01, IETF.Google Scholar
  24. 24.
    G. Phillips, S. Shenker and H. Tangmunarunkit, Scaling of multicast trees: Comments on the chuang-sirbu scaling law, in: SIGCOMM ’99: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, ACM Press, New York, NY, USA (1999) pp. 41–51.Google Scholar
  25. 25.
    I. Romdhani, H. Bettahar and A. Bouabdallah, Transparent handover for mobile multicast sources, in: P. Lorenz and P. Dini, Eds., Proceedings of the IEEE ICN’06’, IEEE Press (2006).Google Scholar
  26. 26.
    I. Romdhani, M. Kellil, H.-Y. Lach, A. Bouabdallah and H. Bettahar, IP mobile multicast: challenges and solutions, IEEE Comm. Surveys & Tutorials 6(1) (2004) 18–41.Google Scholar
  27. 27.
    SCAN project: Internet Maps. SCAN+Lucent map (2005), http://www.isi.edu/scan/mercator/maps.html.Google Scholar
  28. 28.
    T.C. Schmidt and M. W¨hlisch, Extending SSM to MIPv6—problems, solutions and improvements, Computational Methods in Science and Technology 11(2) (2005a) 147–152. Selected Papers from TERENA Networking Conference, Poznań (2005a).Google Scholar
  29. 29.
    T.C. Schmidt and M. W¨hlisch, Multicast mobility in MIPv6: Problem Statement, IRTF Internet Draft—Work in Progress 00, MobOpts, (2005b).Google Scholar
  30. 30.
    T.C. Schmidt and M. W¨hlisch, Predictive versus Reactive—analysis of handover performance and its implications on IPv6 and multicast mobility, Telecommunication Systems 30(1–3) (2005c) 123–142.CrossRefGoogle Scholar
  31. 31.
    T.C. Schmidt and M. W¨hlisch, Seamless multicast Handover in a Hierarchical Mobile IPv6 environment (M-HMIPv6), Internet Draft—Work in Progress 04, individual (2005d). ftp://ftp.rfc-editor.org/in-notes/internet-drafts/draft-sc hmidt-waehlisch-mhmipv6-04.txtGoogle Scholar
  32. 32.
    J.S. Silva, S. Duarte, E. Monteiro and F. Boavida (2003) MNet—A new multicast approach for the future Internet, in: Proceedings of the 10th Intern. Conference on Telecommunications, Vol. 1 (2005d) pp. 340–347.Google Scholar
  33. 33.
    H. Soliman, C. Castelluccia, K. Malki and L. Bellier, Hierarchical mobile IPv6 mobility management (HMIPv6), RFC 4140, IETF (2005).Google Scholar
  34. 34.
    W.R. Stevens, TCP/IP Ilustrated, The Protocols, Vol. 1. Addison Wesley, Reading, MA (1994).Google Scholar
  35. 35.
    D. Thaler, Supporting mobile SSM sources for IPv6, in: proceedings of ietf meeting, individual (2001). www.ietf.org/proceedings/01dec/slides/magma-2.pdfGoogle Scholar
  36. 36.
    P. Van Mieghem, Performance Analysis of Communication Networks and Systems Cambridge University Press, Cambridge, (2006).Google Scholar
  37. 37.
    P. Van Mieghem, G. Hooghiemstra and R. van der Hofstad, On the efficiency of multicast, IEEE/ACM Trans. Netw. 9(6) (2001) 719–732.CrossRefGoogle Scholar
  38. 38.
    A. Varga et al. The OMNeT++ discrete event simulation system (2005). http://www.omnetpp.org.Google Scholar
  39. 39.
    G. Xylomenos and G.C. Polyzos, IP multicast for mobile hosts, IEEE Comm. Mag. 35(1) (1997) 54–58.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.HAW Hamburg Department InformatikBerliner Tor 7HamburgGermany
  2. 2.FHTW BerlinHochschulrechenzentrumBerlinGermany

Personalised recommendations