Advertisement

Telecommunication Systems

, Volume 33, Issue 1–3, pp 117–129 | Cite as

Perceptual aspects in data hiding

  • Marco Carli
  • Patrizio Campisi
  • Alessandro Neri
Article

Abstract

In this paper, a new methodology for the secure embedding of data in a video sequence is presented. To guarantee the imperceptibility of the embedded data, we propose a novel method for selecting the frame regions that may be considered perceptually non relevant. For each frame of the video, a saliency analysis is performed based on features that are thought to be relevant to the Human Vision System. In particular, the local contrast, the color, and the motion information have been considered. By weighting all these features, an importance map is built to drive the embedding procedure. Subjective experiment results show that the artifacts caused by this localized embedding procedure are considered by the subjects to be less annoying than if the data hiding is performed on the whole frame. Nevertheless robustness is achieved.

Keywords

Data hiding Perceptual quality Human vision system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-L.D.G. Doërr, A guided tour to video watermarking, Sig. Proc.: Image Comm. 18 (2003) 263–282.CrossRefGoogle Scholar
  2. 2.
    K.S.D. Kundur and D. Hatzinakos, Digital video watermarking: Techniques, technology and trends, in: H.-C. H. P.J.-S. Pan and e. L. Jain (Eds.) Intelligent Watermarking Techniques, (World Scientific Publishing Company, 2004) Chapter 10, pp. 265–314.Google Scholar
  3. 3.
    M. Moore, Psychophysical measurement and prediction of digital video quality, Ph.D. dissertation, University of California Santa Barbara, June 2002.Google Scholar
  4. 4.
    A.M.W. Osberger, Automatic identification of perceptually important regions in a image, in: International Conference on Pattern Recognition (Brisbane, Australia, 1998).Google Scholar
  5. 5.
    A.J.R.W. Osberger, Automatic detection of regions of interest in complex video sequences, in: SPIE—Human Vision and Electronic Imaging VI (Bellingham, USA, 2001), Vol., 4299 pp. 361–372.Google Scholar
  6. 6.
    Z.Y. Dong Tian and L. Shen, Motion activity based wireless video quality perceptual metric, in: International Symposium on Intelligent Multimedia, video and Speech Processing (Hong Kong, May 2–4 2001) pp. 527–530.Google Scholar
  7. 7.
    L. Karam, An analysis/synthesis model for the human visual based on subspace decomposition and multirate filter bank theory, in: IEEE Int. Symp. Time-Frequency Time-Scale Analysis (October 1992), pp. 559–562.Google Scholar
  8. 8.
    S. Marcelja, Mathematical description of the responses of simple cortical cells, in: J. Opt. Soc. Amer., 70 (1980) 1297–1300.Google Scholar
  9. 9.
    A.B. Watson, The cortex transform: Rapid computation of simulated neural images, Comput. Vis., Graph., Image Process. 39 (1987) 311–327.Google Scholar
  10. 10.
    N. Graham, Neurophysiology and psychophysics, Visual Pattern Analyzers, (Academic, New York, 1989), Chap. 1, pp. 3–34.Google Scholar
  11. 11.
    S.A. Klein and D.N. Levi, Hyperacuity thresholds of 1 sec: Theoretical predictions and empirical validation, J. Opt. Soc. Amer. 2 (1985) 1170–1190.Google Scholar
  12. 12.
    A.A. H.A. Peterson and A. Watson, An improved detection model for dct coefficient quantization, Human Vision, Visual Processing, Display VI: SPIE (1993) 191–201.Google Scholar
  13. 13.
    A.A. J.A. Solomon and A. Watson, Visibility of dct basis functions: Effects of contrast masking, in: Data Compression Conference (1994), pp. 361–370.Google Scholar
  14. 14.
    A. Watson, Dctune: A technique for visual optimization of dct quantization matrices for individual images, in: Soc. Information Display Dig. Tech. Papers XXIV (1993), pp. 946–949.Google Scholar
  15. 15.
    A.B. Watson, Dct quantization matrices visually optimized for individual images, in: B.E. Rogowitz (Ed.), Proc. Human Vision, Visual Processing, Digital Display IV (1993), pp. 202–216.Google Scholar
  16. 16.
    A.B. Watson, Visually optimal dct quantization matrices for individual images, in: Proc. Data Compression Conf. (1993), pp. 178–187.Google Scholar
  17. 17.
    A. Watson, Probability summation over time.Google Scholar
  18. 18.
    J. Robson and N. Graham, Probability summation and regional variation in contrast sensitivity across the visual field.Google Scholar
  19. 19.
    J. M. Foley, Human luminance pattern vision mechanisms: Masking experiments require a new model, Journal of the Optical Society of America A, Vol. 11 (1994), pp. 1710–1719.Google Scholar
  20. 20.
    J. Malo, I. Epifanio, R. Navarro and E.P. Simoncelli, Non-Linear Image Representation for Efficient Perceptual Coding, IEEE Transactions On Image Processing, (preprint).Google Scholar
  21. 21.
    A.B. Watson and J.A. Solomon, A model of visual contrast gain control and pattern masking, Journal of the Optical Society A, 14 (1997), 2379–2391.Google Scholar
  22. 22.
    M.M. S.M.-M. T.P. S. Pereira and S. Voloshynovskiy, Second generation benchmarking and application oriented evaluation, in: Proc. Information Hiding Workshop (Pittsburgh, PA, USA, April 2001).Google Scholar
  23. 23.
    S. Daly, Engineering observations from spatiovelocity and spatiotemporal visual models, in: SPIE—Human Vision and Electronic Imaging III, (Bellingham, USA, 1998) vol. 3299 pp. 180–191.Google Scholar
  24. 24.
    A. Neri, P. Campisi, M. Carli and E. Drelie Gelasca, Watermark hiding in video sequences, in: IEEE International Workshop on Video Processing and Quality Metrics for Consumer Electronics, (Scottsdale, Arizona,USA, January 2005) January 2005, Scottsdale, Arizona, USA.Google Scholar
  25. 25.
    25. C. Tomasi and T. Kanade, Detection and tracking of point features. Tech. Rept. CMU-CS-91132. Carnegie Mellon University School of Computer Science, Pittsburgh (1991).Google Scholar
  26. 26.
    T.K.B.D. Lucas, An iterative image registration technique with an application to stereo vision, in: Proceedings of the 7th International Joint Conference on Artificial Intelligence (Vancouver, 1981) pp. 674–679.Google Scholar
  27. 27.
    T. Takeuchi, K. K De Valois and J.L. Hardy, The influence of color on the perception of luminance motion, Vision Research 43 (2003) 1159–1175.Google Scholar
  28. 28.
    I. Cox, J. Kilian, F. Leighton, and T. Shamoon, Secure spread spectrum watermarking for multimedia, IEEE Transaction on Image Processing 6(12), (1997).Google Scholar
  29. 29.
    Methodology for subjective assessment of the quality of television pictures, ITU Recommendation BT.500-8, Tech. Rep. (1998).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Marco Carli
    • 1
  • Patrizio Campisi
    • 1
  • Alessandro Neri
    • 1
  1. 1.Applied Electronics DepartmentUniversita” degli Studi Roma TRERomaItaly

Personalised recommendations