Advertisement

Theoretical and Mathematical Physics

, Volume 185, Issue 3, pp 1741–1758 | Cite as

Quiver varieties and the quantum Knizhnik–Zamolodchikov equation

  • P. Zinn-JustinEmail author
Article

Abstract

We show how equivariant volumes of tensor product quiver varieties of type A are given by matrix elements of vertex operators of centrally extended doubles of Yangians and how these elements satisfy the rational level-one quantum Knizhnik–Zamolodchikov equation in some cases.

Keywords

quiver variety quantum Knizhnik–Zamolodchikov equation quantum integrable system equivariant cohomology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Ginzburg, M. Kapranov, and E. Vasserot, “Elliptic algebras and equivariant elliptic cohomology,” arXiv:qalg/9505012v1 (1995).Google Scholar
  2. 2.
    V. Ginzburg, M. Kapranov, and E. Vasserot, Adv. Math., 214, 40–77 (2007); arXiv:math/0503224v3 (2005).MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Di Francesco and P. Zinn-Justin, J. Phys. A, 38, L815–L822 (2005); arXiv:math-ph/0508059v3 (2005).zbMATHCrossRefGoogle Scholar
  4. 4.
    D. Maulik and A. Okounkov, “Quantum groups and quantum cohomology,” arXiv:1211.1287v1 [math.AG] (2012).Google Scholar
  5. 5.
    R. Rimányi, V. Tarasov, A. Varchenko, and P. Zinn-Justin, J. Geom. Phys., 62, 2188–2207 (2012); arXiv: 1110.2187v2 [math-ph] (2011).zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    H. Nakajima, Duke Math. J., 76, 365–416 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Nakajima, Duke Math. J., 91, 515–560 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Nakajima, J. Amer. Math. Soc., 14, 145–238 (2001); arXiv:math/9912158v1 (1999).zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    H. Nakajima, Invent. Math., 146, 399–449 (2001); arXiv:math/0103008v2 (2001).zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    V. Ginzburg, “Lectures on Nakajima’s quiver varieties,” in: Geometric Methods in Representation Theory I (Séminairés et Congrès, Vol. 24, M. Brion, ed.), Société Mathématique de France, Paris (2012), pp. 145–219; arXiv:0905.0686v2 [math.RT] (2009).MathSciNetGoogle Scholar
  11. 11.
    I. Mirkovic and M. Vybornov, “Quiver varieties and Beilinson–Drinfeld Grassmannians of type A,” arXiv: 0712.4160v2 [math.AG] (2007).Google Scholar
  12. 12.
    N. Spaltenstein, Classes unipotentes et sous-groupes de Borel (Lect. Notes Math., Vol. 946), Springer, Berlin (1982).Google Scholar
  13. 13.
    S. Khoroshkin, “Central extension of the Yangian double,” in: Algèbre non commutative, groupes quantiques et invariants (Séminairés et Congrès, Vol. 2, J. Alev and G. Cauchon, eds.), Société Mathématique de France, Paris (1997), pp. 119–135; arXiv:q-alg/9602031v1 (1996).MathSciNetGoogle Scholar
  14. 14.
    S. Khoroshkin, D. Lebedev, and S. Pakuliak, Phys. Lett. A, 222, 381–392 (1996); arXiv: q-alg/9602030v3 (1996).zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    S. Khoroshkin, D. Lebedev, and S. Pakuliak, Lett. Math. Phys., 41, 31–47 (1997); arXiv:q-alg/9605039v1 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Nakayashiki, Commun. Math. Phys., 212, 29–61 (2000); arXiv:math/9902139v1 (1999).zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    V. Tarasov and A. Varchenko, Invent. Math., 128, 501–588 (1997).zbMATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    I. Frenkel and N. Reshetikhin, Commun. Math. Phys., 146, 1–60 (1992).zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    M. Idzumi, T. Tokihiro, K. Iohara, M. Jimbo, T. Miwa, and T. Nakashima, Internat. J. Mod. Phys. A, 8, 1479–1511 (1993); arXiv:hep-th/9208066v1 (1992).MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    A. Ponsaing and P. Zinn-Justin, “Type Ĉ brauer loop schemes and loop model with boundaries,” arXiv: 1410.0262v2 [math-ph] (2014).Google Scholar
  21. 21.
    I. Cherednik, Commun. Math. Phys., 150, 109–136 (1992).zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    D. Grayson and M. Stillman, “Macaulay2,” A software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/ (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique et Hautes Énergies, CNRS UMRUniversité Pierre et Marie Curie (Paris 6)ParisFrance
  2. 2.Department of Mathematics and StatisticsThe University of MelbourneVictoriaAustralia

Personalised recommendations