Advertisement

Theoretical and Mathematical Physics

, Volume 185, Issue 2, pp 1665–1677 | Cite as

Ultrametricity in the theory of complex systems

  • S. V. KozyrevEmail author
Article

Abstract

We review applications of p-adic and ultrametric methods in the theory of complex systems. We consider the following examples: the p-adic parameterization of the Parisi matrix in the replica method; the method of hierarchical (interbasin) kinetics, which allows describing macromolecular dynamics by models of ultrametric diffusion; the two-dimensional 2-adic parameterization of the genetic code, which demonstrates that degenerations of the genetic code are described by local constancy domains of maps in the 2-adic metric. We discuss clustering methods for a family of metrics and demonstrate that the multiclustering (ensemble clustering) approach is related to the Bruhat–Tits building theory.

Keywords

ultrametrics complex system clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, P-Adic Analysis and Mathematical Physics [in Russian], Nauka, Moscow (1994)CrossRefGoogle Scholar
  2. 1a.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, English transl., World Scientific, Singapore (1994).Google Scholar
  3. 2.
    B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, P-Adic Numbers Ultrametric Anal. Appl., 1, 1–17 (2009); arXiv:0904.4205v1 [math-ph] (2009).CrossRefMathSciNetzbMATHGoogle Scholar
  4. 3.
    A. N. Kochubei, Pseudo-Differential Equations and Stochastics Over Non-Archimedean Fields, Marcel Dekker, New York (2001).CrossRefzbMATHGoogle Scholar
  5. 4.
    V. Anashin and A. Khrennikov, Applied Algebraic Dynamics (de Gruyter Expo. Math., Vol. 49), de Gruyter, Berlin (2009).CrossRefzbMATHGoogle Scholar
  6. 5.
    S. Albeverio, A. Yu. Khrennikov, and V. M. Shelkovich, Theory of p-Adic Distributions (London Math. Soc. Lect. Note Ser., Vol. 370), Cambridge Univ. Press, Cambridge (2010).zbMATHGoogle Scholar
  7. 6.
    I. V. Volovich, Class. Q. Grav., 4, L83–87 (1987).CrossRefADSMathSciNetGoogle Scholar
  8. 7.
    M. Mezard, G. Parisi, and M. Virasoro, Spin-Glass Theory and Beyond (World Sci. Lect. Notes Phys., Vol. 9), World Scientific, Singapore (1987).zbMATHGoogle Scholar
  9. 8.
    V. A. Avetisov, A. H. Bikulov, and S. V. Kozyrev, J. Phys. A: Math. Gen., 32, 8785–8791 (1999); arXiv:condmat/9904360v1 (1999).CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. 9.
    G. Parisi and N. Sourlas, Eur. Phys. J. B, 14, 535–542 (2000); arXiv:cond-mat/9906095v1 (1999).CrossRefADSMathSciNetGoogle Scholar
  11. 10.
    A. Yu. Khrennikov and S. V. Kozyrev, Phys. A, 359, 222–240 (2006); arXiv:cond-mat/0603685v1 (2006).CrossRefGoogle Scholar
  12. 11.
    A. Yu. Khrennikov and S. V. Kozyrev, Phys. A, 359, 241–266 (2006); arXiv:cond-mat/0603687v1 (2006).CrossRefGoogle Scholar
  13. 12.
    A. Yu. Khrennikov and S. V. Kozyrev, Phys. A, 378, 283–298 (2007); arXiv:cond-mat/0603694v1 (2006).CrossRefGoogle Scholar
  14. 13.
    D. M. Carlucci and C. De Dominicis, C. R. Acad Sci. Ser. IIB, 325, 527–530 (1997); arXiv:cond-mat/9709200v1 (1997).ADSzbMATHGoogle Scholar
  15. 14.
    C. De Dominicis, D. M. Carlucci, and T. Temesvári, Journal de Physique I (France), 7, 105–115 (1997); arXiv: cond-mat/9703132v1 (1997).CrossRefADSGoogle Scholar
  16. 15.
    M. Talagrand, Spin glasses, a Challenge for Mathematicians: Cavity and Mean Field Models (Ser. Mod. Surv. Math., Vol. 46), Springer, Berlin (2003).Google Scholar
  17. 16.
    O. M. Becker and M. Karplus, J. Chem. Phys., 106, 1495–1517 (1997).CrossRefADSGoogle Scholar
  18. 17.
    A. T. Ogielski and D. L. Stein, Phys. Rev. Lett., 55, 1634–1637 (1985).CrossRefADSMathSciNetGoogle Scholar
  19. 18.
    V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, and V. A. Osipov, J. Phys. A: Math. Gen., 35, 177–189 (2002); arXiv:cond-mat/0106506v1 (2001).CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 19.
    V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, Proc. Steklov Inst. Math., 285, 3–25 (2014).CrossRefzbMATHGoogle Scholar
  21. 20.
    V. A. Avetisov, A. Kh. Bikulov, and V. Al. Osipov, J. Phys. A: Math. Gen., 36, 4239–4246 (2003).CrossRefADSzbMATHGoogle Scholar
  22. 21.
    V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, J. Phys. A: Math. Theor., 42, 085003 (2009).CrossRefADSMathSciNetGoogle Scholar
  23. 22.
    S. V. Kozyrev, P-Adic Ultrametric Anal. Appl., 2, 122–132 (2010).CrossRefMathSciNetzbMATHGoogle Scholar
  24. 23.
    S. Albeverio and W. Karwowski, Stochastic Processes Appl., 53, 1–22 (1994).CrossRefMathSciNetzbMATHGoogle Scholar
  25. 24.
    S. K. Nechaev and O. A. Vasiliev, Proc. Steklov Inst. Math., 245, 169–188 (2004); arXiv:cond-mat/0310079v1 (2003).Google Scholar
  26. 25.
    V. A. Avetisov, A. Kh. Bikulov, and A. P. Zubarev, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1(22), 9–15 (2011).CrossRefGoogle Scholar
  27. 26.
    V. A. Avetisov, V. A. Ivanov, D. A. Meshkov, and S. K. Nechaev, JETP Lett., 98, 242–246 (2013).CrossRefADSGoogle Scholar
  28. 27.
    F. Murtagh, Multidimensional Clustering Algorithms (Compstat Lect., Vol. 4), Physica, Heidelberg (1985).zbMATHGoogle Scholar
  29. 28.
    F. Murtagh and P. Contreras, P-Adic Numbers, Ultrametric Anal. Appl., 4, 46–56 (2012).CrossRefMathSciNetzbMATHGoogle Scholar
  30. 29.
    F. Murtagh, P-Adic Numbers, Ultrametric Anal. Appl., 5, 326–337 (2013).CrossRefGoogle Scholar
  31. 30.
    V. A. Lemin, “Finite ultrametric spaces and computer science,” in: Categorical Perspectives (J. Koslowski and A. Melton, eds.), Birkhäuser, Boston, Mass. (2001), pp. 219–241.CrossRefGoogle Scholar
  32. 31.
    M. Greenfield, M. Marcolli, and K. Teh, P-Adic Numbers, Ultrametric Anal. Appl., 6, 81–104 (2014).CrossRefMathSciNetzbMATHGoogle Scholar
  33. 32.
    M. Marcolli and N. Tedeschi, P-Adic Numbers, Ultrametric Anal. Appl., 6, 135–154 (2014).CrossRefMathSciNetzbMATHGoogle Scholar
  34. 33.
    E. Yu. Lerner and M. D. Missarov, Lett. Math. Phys., 22, 123–129 (1991).CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. 34.
    A. Strehl, J. Ghosh, and C. Cardie, J. Machine Learning Research, 3, 583–617 (2002).Google Scholar
  36. 35.
    S. V. Kozyrev, Theor. Math. Phys., 164, 1163–1168 (2010).CrossRefzbMATHGoogle Scholar
  37. 36.
    S. Albeverio and S. V. Kozyrev, P-Adic Numbers, Ultrametric Anal. Appl., 4, 167–178 (2012); arXiv:1204.5952v1 [cs.DS] (2012).CrossRefMathSciNetzbMATHGoogle Scholar
  38. 37.
    S. V. Kozyrev, Theor. Math. Phys., 180, 958–966 (2014); arXiv:1404.6960v1 [math.MG] (2014).CrossRefMathSciNetzbMATHGoogle Scholar
  39. 38.
    B. Dragovich and A. Dragovich, P-Adic Numbers, Ultrametric Anal. Appl., 1, 34–41 (2009); arXiv:q-bio/0607018v1 (2006).CrossRefMathSciNetzbMATHGoogle Scholar
  40. 39.
    B. Dragovich, A. Dragovich, Computer J., 53, 432–442 (2010); arXiv:0707.3043v1 [q-bio.OT] (2007).CrossRefGoogle Scholar
  41. 40.
    A. Yu. Khrennikov and S. V. Kozyrev, Phys. A, 381, 265–272 (2007); arXiv:q-bio.QM/0701007v3 (2007).CrossRefGoogle Scholar
  42. 41.
    A. Yu. Khrennikov and S. V. Kozyrev, J. Theoret. Biology., 261, 396–406 (2009); arXiv:0903.0137v3 [q-bio.GN] (2009).CrossRefMathSciNetGoogle Scholar
  43. 42.
    S. V. Kozyrev and A. Yu. Khrennikov, Dokl. Math., 81, 128–130 (2010).CrossRefMathSciNetzbMATHGoogle Scholar
  44. 43.
    A. Yu. Khrennikov and S. V. Kozyrev, P-Adic Numbers, Ultrametric Anal. Appl., 3, 165–168 (2011).CrossRefMathSciNetzbMATHGoogle Scholar
  45. 44.
    A. Yu. Khrennikov and S. V. Kozyrev, “2-Adic degeneration of the genetic code and energy of binding of codons,” in: Quantum Bio-Informatics III (L. Accardi, W. Freudenberg, and M. Ohya, eds.), World Scientific, Singapore (2010), pp. 193–204.CrossRefGoogle Scholar
  46. 45.
    S. V. Kozyrev, Proc. Steklov Inst. Math., 274, 1–84 (2011).CrossRefMathSciNetGoogle Scholar
  47. 46.
    A. Monna, Analyse non-Archimedienne, Springer, New York (1970).Google Scholar
  48. 47.
    Yu. I. Manin, “Reflections on arithmetical physics,” in: Conformal Invariance and String Theory (P. Dita and V. Georgescu, eds.), Acad. Press, Boston (1989), pp. 293–303.Google Scholar
  49. 48.
    I. Ya. Aref’eva, B. Dragovich, P. H. Frampton, and I. V. Volovich, Internat. J. Mod. Phys. A, 6, 4341–4358 (1991).CrossRefADSMathSciNetzbMATHGoogle Scholar
  50. 49.
    L. Brekke and P. G. O. Freund, Phys. Rep., 233, 1–66 (1993).CrossRefADSMathSciNetGoogle Scholar
  51. 50.
    V. S. Vladimirov, Proc. Steklov Inst. Math., 245, 3–21 (2004).Google Scholar
  52. 51.
    V. S. Varadarajan, Proc. Steklov Inst. Math., 245, 258–265 (2004).MathSciNetGoogle Scholar
  53. 52.
    A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems, and Biological Models, Kluwer, Dordrecht (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations