Theoretical and Mathematical Physics

, Volume 185, Issue 1, pp 1425–1432 | Cite as

High energy physics in the vicinity of rotating black holes

Article

Abstract

We consider particle collisions in the vicinity of the horizon of rotating black holes. We show that the existence of geodesics for both massive and massless particles coming from inside the gravitational radius leads to different possibilities for an unboundedly high collision energy to appear in the center-of-mass frame of two particles. We give a classification of such geodesics in the general case based on a proved theorem for extremal spherical orbits. We analyze the case of the unbounded energy increase in the situation where one (critical) particle moves along the “white hole” geodesic with an angular momentum close to the bound while the other particle falls along an ordinary geodesic and the case of an unbounded negative angular momentum of the first particle.

Keywords

black hole Kerr metric particle collision geodesic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett., 103,111102(2009).CrossRefADSGoogle Scholar
  2. 2.
    A. A. Grib and Yu. V. Pavlov, JETP Letters, 92, 125–129 (2010).CrossRefADSGoogle Scholar
  3. 3.
    A. A. Grib and Yu. V. Pavlov, Astropart. Phys., 34, 581–586 (2011); arXiv:1001.0756v2 [gr-qc] (2010).CrossRefADSGoogle Scholar
  4. 4.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol., 17, 42–46 (2011); arXiv:1010.2052v1 [gr-qc] (2010).MATHCrossRefADSGoogle Scholar
  5. 5.
    K. S. Thorne, Astrophys. J., 191, 507–519 (1974).CrossRefADSGoogle Scholar
  6. 6.
    A. A. Grib and Yu. V. Pavlov, Theor. Math. Phys., 176, 881–887 (2013).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. A. Grib and Yu. V. Pavlov, Europhys. Lett., 101,20004(2013).CrossRefADSGoogle Scholar
  8. 8.
    A. A. Grib and Yu. V. Pavlov, Grav. Cosmol., 21, 13–18 (2015); arXiv:1410.5736v1 [gr-qc] (2014).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Theory of Fields [in Russian], Nauka, Moscow (1988); English transl. prev. ed.: The Classical Theory of Fields, Pergamon, Oxford (1983).Google Scholar
  10. 10.
    A. A. Grib, Yu. V. Pavlov, and V. D. Vertogradov, Modern Phys. Lett. A, 29,1450110(2014); arXiv:1304.7360v2 [gr-qc] (2013).MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    R. Penrose, Rivista Nuovo Cimento, 1, 252–276 (1969).ADSGoogle Scholar
  12. 12.
    R. P. Kerr, Phys. Rev. Lett., 11, 237–238 (1963).MATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    R. H. Boyer and R. W. Lindquist, J. Math. Phys., 8, 265–281 (1967).MATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    S. Chandrasekhar, The Mathematical Theory of Black Holes, Clarendon, New York (1983).MATHGoogle Scholar
  15. 15.
    I. D. Novikov and V. P. Frolov, Physics of Black Holes [in Russian], Nauka, Moscow (1986); English transl.: V. P. Frolov and I. D. Novikov Black Hole Physics: Basic Concepts and New Developments, Kluwer Academic, Dordrecht (1998).Google Scholar
  16. 16.
    I. G. Dymnikova, Sov. Phys. Usp., 29, 215–237 (1986).CrossRefADSGoogle Scholar
  17. 17.
    J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys. J., 178, 347–369 (1972).CrossRefADSGoogle Scholar
  18. 18.
    T. Harada and M. Kimura, Phys. Rev. D, 83,084041(2011); arXiv:1102.3316v2 [gr-qc] (2011).CrossRefADSGoogle Scholar
  19. 19.
    A. A. Grib, Yu. V. Pavlov, and O. F. Piattella, Grav. Cosmol., 18, 70–75 (2012); arXiv:1203.4952v1 [gr-qc] (2012).MATHCrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Theoretical Physics and Astronomy DepartmentHerzen UniversitySt. PetersburgRussia
  2. 2.Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  3. 3.Institute of Problems in Mechanical Engineering of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations