Theoretical and Mathematical Physics

, Volume 184, Issue 1, pp 961–972 | Cite as

Solutions of the sine-Gordon equation with a variable amplitude

Article

Abstract

We propose methods for constructing functionally invariant solutions u(x, y, z, t) of the sine-Gordon equation with a variable amplitude in 3+1 dimensions. We find solutions u(x, y, z, t) in the form of arbitrary functions depending on either one (α(x, y, z, t)) or two (α(x, y, z, t), β(x, y, z, t)) specially constructed functions. Solutions f(α) and f(α, β) relate to the class of functionally invariant solutions, and the functions α(x, y, z, t) and β(x, y, z, t) are called the ansatzes. The ansatzes (α, β) are defined as the roots of either algebraic or mixed (algebraic and first-order partial differential) equations. The equations defining the ansatzes also contain arbitrary functions depending on (α, β). The proposed methods allow finding u(x, y, z, t) for a particular, but wide, class of both regular and singular amplitudes and can be easily generalized to the case of a space with any number of dimensions.

Keywords

sine-Gordon equation wave equation eikonal equation functionally invariant solution ansatz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Frenkel and T. Kontorova, Acad. Sci. USSR J. Phys., 1, 137–149 (1939).MathSciNetMATHGoogle Scholar
  2. 2.
    E. L. Aero and A. N. Bulygin, Mech. Solids, 42, 807–822 (2007).CrossRefGoogle Scholar
  3. 3.
    P. Guéret, IEEE Trans. Magnetics, 11, 751–754 (1975).CrossRefADSGoogle Scholar
  4. 4.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Acad. Press, London (1982).MATHGoogle Scholar
  5. 5.
    P. G. de Gennes, The Physics of Liquid Crystals, Clarendon, Oxford (1974).Google Scholar
  6. 6.
    K. Lonngren and A. C. Scott, eds., Solitons in Action, Acad. Press, eds (1978).MATHGoogle Scholar
  7. 7.
    W. L. McMillan, Phys. Rev. B, 14, 1496–1502 (1976).CrossRefADSGoogle Scholar
  8. 8.
    V. G. Bykov, Nonlinear Wave Processes in Geologic Media [in Russian], Dal’nauka, Vladivostok (2000).Google Scholar
  9. 9.
    P. L. Chebyshev, Uspekhi Mat. Nauk, 1, No. 2(12), 38–42 (1946).MATHGoogle Scholar
  10. 10.
    A. S. Davydov, Solitons in Bioenergetics [in Russian], Naukova Dumka, Kiev (1986).MATHGoogle Scholar
  11. 11.
    L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986)Google Scholar
  12. 11a.
    L. A. Takhtadzhyan and L. D. Faddeev, English transl.: Hamiltonian Methods in the Theory of Solitons, Springer, Berlin (1987).MATHGoogle Scholar
  13. 12.
    L. A. Takhtadzhyan and L. D. Faddeev, Theor. Math. Phys., 21, 1046–1057 (1974).CrossRefGoogle Scholar
  14. 13.
    I. A. Garagash, V. N. Nikolaevskiy, Computational Continuum Mechanics, 2, 44–66 (2009).CrossRefGoogle Scholar
  15. 14.
    H. Bateman, Electrical and Optical Wave Motion Cambridge Univ. Press, London (1914).Google Scholar
  16. 15.
    A. R. Forsyth, Messenger Math., 27, 99–118 (1898).Google Scholar
  17. 16.
    V. Smirnoff and S. Soboleff, “Sur une méthode nouvelle dans le problême plan des vibrations élastiques,” in: Trudy seismologichecskogo in-ta [Works of the Seismological Institute], No. 20, Acad. Sci. USSR, Leningrad (1932).Google Scholar
  18. 17.
    V. Smirnoff and S. Soboleff, C. R. Acad. Sci. Paris, 194, 1437–1439 (1932).Google Scholar
  19. 18.
    S. Sobolev, “Functionally invariant solutions of wave equation,” in: Travaux Inst. Physico-Math. Stekloff, Vol. 5, Acad. Sci. USSR, Leningrad (1934), pp. 259–2.Google Scholar
  20. 19.
    S. L. Sobolev, Selected Works [in Russian], Vol. 1, Equations of Mathematical Physics: Computational Mathematics and Cubature Formulas, Sobolev Inst. Math., Siberian Branch, Russ. Acad. Sci., Novosibirsk (2003)Google Scholar
  21. 19a.
    S. L. Sobolev, Op. cit., Vol. 2, Functional Analysis: Partial Differential Equations, Sobolev Inst. Math., Siberian Branch, Russ. Acad. Sci., Novosibirsk (2006).Google Scholar
  22. 20.
    N. P. Erugin, Uchenye zap. Leningr. un-ta., 15, 101–134 (1948).Google Scholar
  23. 21.
    M. M. Smirnov, Dokl. AN SSSR, 67, 977–980 (1949).MATHGoogle Scholar
  24. 22.
    E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Theor. Math. Phys., 158, 313–319 (2009).CrossRefMathSciNetMATHGoogle Scholar
  25. 23.
    E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Nelineinyi Mir, 7, 513–517 (2009).Google Scholar
  26. 24.
    E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Differ. Equ., 47, 1442–1452 (2011).CrossRefMathSciNetMATHGoogle Scholar
  27. 25.
    E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Appl. Math. Comput., 223, 160–166 (2013).CrossRefMathSciNetGoogle Scholar
  28. 26.
    C. G. J. Jacobi, J. Reine Angew. Math., 36, 113–134 (1848)CrossRefMathSciNetMATHGoogle Scholar
  29. 26a.
    C. G. J. Jacobi, “Über eine particulôre LÖsung der partiellen Differentialgleichung \(\frac{{{\partial ^2}V}}{{\partial {x^2}}} + \frac{{{\partial ^2}V}}{{\partial {y^2}}} + \frac{{{\partial ^2}V}}{{\partial {z^2}}}\),” in: C. G. J. Jacobi’s Gesammelte Werke (C. G. J. Jacobi and C. W. Borchardt, eds.), Vol. 2, Verlag von G.Reimer, Berlin(1882), pp. 191–2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Problems in Mechanical EngineeringRASSt. PetersburgRussia

Personalised recommendations