Advertisement

Theoretical and Mathematical Physics

, Volume 184, Issue 1, pp 953–960 | Cite as

Action as an invariant of Bäcklund transformations for Lagrangian systems

Article

Abstract

We construct a general theory of Bäcklund transformations for Lagrangian systems under the condition that the action is preserved by these transformations. We discuss the known Bäcklund transformations for classical soliton equations from the standpoint of this approach and obtain a new Bäcklund transformation for the Tzitzéica equation.

Keywords

integrable system canonical transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Adler, V. G. Marikhin, and A. B. Shabat, Theor. Math. Phys., 129, 1448–1465 (2001).CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    V. G. Marikhin and A. B. Shabat, “Hamiltonian theory of Bäcklund transformations,” in: Optical Solitons: Theoretical Challenges and Industrial Perspectives (Centre Phys. Houches., Vol. 12, V. E. Zakharov and S. Wabnitz, eds.), Springer, Berlin (1999), pp. 19–2.Google Scholar
  3. 3.
    V. G. Marikhin, JETP Lett., 66, 705–710 (1997).CrossRefADSGoogle Scholar
  4. 4.
    A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, 1–63 (1987).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    V. E. Adler and A. B. Shabat, Theor. Math. Phys., 112, 935–948 (1997).CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    A. N. Leznov, A. B. Shabat, and R. I. Yamilov, Phys. Lett. A, 174, 397–402 (1993).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    R. I. Yamilov, “Classification of Toda type scalar lattices,” in: Nonlinear Evolution Equations and Dynamical Systems (NEEDS’92) (Dubna, Russia, 6–17 July 1992, V. G. Makhankov, O. Pashaev, and I. Puzynin, eds.), World Scientific, Singapore (1993), pp. 423–2.Google Scholar
  8. 8.
    V. G. Marikhin and A. B. Shabat, Theor. Math. Phys., 118, 173–182 (1999).CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    A. B. Shabat and R. I. Yamilov, Leningrad Math. J., 2, 377–400 (1991).MathSciNetMATHGoogle Scholar
  10. 10.
    V. E. Adler, Theor. Math. Phys., 124, 897–908 (2000).CrossRefMATHGoogle Scholar
  11. 11.
    E. K. Sklyanin, Funct. Anal. Appl., 16, 263–270 (1982).CrossRefMathSciNetGoogle Scholar
  12. 12.
    A. P. Veselov and A. B. Shabat, Funct. Anal. Appl., 27, 81–96 (1993).CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    V. E. Adler, Internat. Math. Res. Notes, No. 1, 1–4 (1998).CrossRefGoogle Scholar
  14. 14.
    M. G. Tzitzéica, Rendiconti del Circolo Matematico di Palermo, 25, 180–187 (1907).CrossRefGoogle Scholar
  15. 15.
    A. V. Zhiber and A. B. Shabat, Soviet Phys. Dokl., 24, 607–609 (1979).ADSGoogle Scholar
  16. 16.
    S. S. Safin and R. A. Sharipov, Theor. Math. Phys., 95, 462–470 (1993).CrossRefMathSciNetGoogle Scholar
  17. 17.
    A. V. Mikhailov and V. V. Sokolov, Private communication (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsRASMoscowRussia

Personalised recommendations