Theoretical and Mathematical Physics

, Volume 183, Issue 3, pp 782–799 | Cite as

Stochastic limit method and interference in quantum many-particle systems

  • I. Ya. Aref’eva
  • I. V. Volovich
  • S. V. Kozyrev
Article

Abstract

We consider the problem of excitation energy transfer in quantum many-particle systems with a dipole interaction. The considered exciton transfer mechanism is based on quantum interference. We show that by a special choice of interaction parameters, an enhancement of the exciton transfer to a sink and suppression of the transfer to alternative sinks can be achieved. The enhancement is proportional to the number of particles in the system. We use the quantum stochastic limit method to describe the dynamics. We indicate possible applications of the proposed mechanism to quantum processes in photosynthesis.

Keywords

stochastic limit of quantum theory dynamics of quantum many-particle systems quantum transfer process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Accardi, L. Y. Gang, and I. Volovich, Quantum Theory and Its Stochastic Limit, Springer, Berlin (2002).MATHCrossRefGoogle Scholar
  2. 2.
    V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Weinheim (2011).CrossRefGoogle Scholar
  3. 3.
    L. Accardi, S. V. Kozyrev, and I. V. Volovich, Phys. Rev. A, 56, 2557–2562 (1997); arXiv:quant-ph/9706021v1 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    L. Accardi and S. V. Kozyrev, “Lectures on quantum interacting particle systems,” in: Quantum Interacting Particle Systems (Quant. Probab. White Noise Anal., Vol. 14, L. Accardi and F. Fagnola, eds.), World Scientific, Singapore (2002), pp. 1–195.CrossRefGoogle Scholar
  5. 5.
    L. Accardi and S. V. Kozyrev, Internat. J. Theoret. Phys., 45, 661–678 (2006); arXiv:quant-ph/0303185v1 (2003).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nature Chem., 3, 763–774 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems, Springer, Dordrecht (2011).MATHCrossRefGoogle Scholar
  8. 8.
    G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature, 446, 782–786 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. USA, 106, 17255–17260 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, Nature, 463, 644–647 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. W. Chin, A. Datta, F. Caruso, S. F. Huelga, and M. B. Plenio, New J. Phys., 12, 065002 (2010); arXiv:0910.4153v2 [quant-ph] (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. Ya. Aref’eva
    • 1
  • I. V. Volovich
    • 1
  • S. V. Kozyrev
    • 1
  1. 1.Steklov Mathematical Institute of RASMoscowRussia

Personalised recommendations