Advertisement

Theoretical and Mathematical Physics

, Volume 182, Issue 2, pp 231–245 | Cite as

Soliton-like structures on a liquid surface under an ice cover

  • A. T. Il’ichevEmail author
  • V. Ya. Tomashpolskii
Article

Abstract

For a complete system of equations describing wave propagation in a fluid of finite depth under an ice cover, we prove the existence of soliton-like solutions corresponding to a family of solitary waves of surface level depression. The ice cover is modeled as a Kirchhoff-Love elastic plate and has a significant thickness such that the plate inertia is taken into account in the model formulation. The family of solitary waves is parameterized by the wave propagation velocity, and its existence is proved for velocities that bifurcate from the characteristic velocity of linear waves and are rather close to this velocity. In turn, the solitary waves bifurcate from the rest state and are located in its neighborhood. In other words, we prove the existence of small-amplitude solitary waves of water-ice interface level depression. The proof uses the projection of the sought system of equations onto the center manifold (whose dimensionality is two in this case) and a further analysis of a finite-dimensional reduced dynamical system on the center manifold.

Keywords

ice cover solitary wave bifurcation center manifold resolvent estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Stoker, Water Waves: The Mathematical Theory with Applications, Wiley Interscience, New York (1957).zbMATHGoogle Scholar
  2. 2.
    D. G. Duffy, Cold Reg. Sci. Tech., 20, 51–64 (1991).CrossRefGoogle Scholar
  3. 3.
    D. G. Duffy, Cold Reg. Sci. Tech., 24, 29–39 (1996).CrossRefGoogle Scholar
  4. 4.
    A. V. Marchenko and A. Yu. Semenov, Fluid Dyn., 29, 589–592 (1994).CrossRefADSzbMATHGoogle Scholar
  5. 5.
    A. V. Marchenko, E. G. Morozov, S. V. Muzylev, and A. S. Shestov, Oceanology, 50, 18–27 (2010).CrossRefADSGoogle Scholar
  6. 6.
    S. V. Muzylev, Oceanology, 46, 465–471 (2006).CrossRefADSGoogle Scholar
  7. 7.
    R. M. S. M. Schulkes, R. J. Hosking, and A. D. Sneyd, J. Fluid Mech., 180, 297–318 (1987).CrossRefADSzbMATHGoogle Scholar
  8. 8.
    V. A. Squire, Cold Reg. Sci. Tech., 10, 59–68 (1984).CrossRefGoogle Scholar
  9. 9.
    E. O. Tuck, J. Austral. Math. Soc. Ser. B, 23, 403–415 (1982).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    L. K. Forbes, J. Fluid Mech., 169, 409–428 (1986).CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    L. K. Forbes, J. Fluid Mech., 188, 491–508 (1988).CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    I. Bakholdin and A. Il’ichev, Eur. J. Mech. B/Fluids, 23, 291–304 (2003).CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. T. Il’ichev, Fluid Dyn., 35, 157–176 (2000).CrossRefADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    A. T. Il’ichev and A. V. Marchenko, Fluid Dyn., 24, 73–79 (1989).CrossRefADSzbMATHMathSciNetGoogle Scholar
  15. 15.
    A. T. Il’ichev and A. V. Marchenko, J. Appl. Math., 61, 183–193 (1997).MathSciNetGoogle Scholar
  16. 16.
    A. V. Marchenko, J. Appl. Math., 52, 180–183 (1988).zbMATHGoogle Scholar
  17. 17.
    A. V. Marchenko and N. R. Sibgatullin, Herald Moscow State Univ. Ser. 1. Math. and Mech., 4, 94–97 (1986).Google Scholar
  18. 18.
    A. V. Marchenko and N. R. Sibgatullin, Fluid Dyn., 22, 872–879 (1987).CrossRefADSzbMATHGoogle Scholar
  19. 19.
    E. Parau and F. Dias, J. Fluid. Mech., 437, 325–336 (2001).CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    L. Brevdo and A. Il’ichev, Z. Angew. Math. Phys., 49, 401–419 (1998).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    L. Brevdo and A. Il’ichev, Cold Reg. Sci. Tech., 33, 77–89 (2001).CrossRefGoogle Scholar
  22. 22.
    L. Brevdo and A. Il’ichev, Eur. J. Mech. A: Solids, 25, 509–525 (2006).CrossRefADSzbMATHMathSciNetGoogle Scholar
  23. 23.
    J. Strathdee, W. H. Robinson, and E. M. Haines, J. Fluid Mech., 226, 37–61 (1991).CrossRefADSzbMATHGoogle Scholar
  24. 24.
    S. V. Muzylev, “Waves in an ocean under the ice cover: Foundations of theory and model problems,” in: Modern Problems of Ocean and Atmosphere Dynamics (A. V. Frolov and Yu. D. Resnyansky, eds.) [in Russian], TRIADA LTD, Moscow (2010), pp. 315–345.Google Scholar
  25. 25.
    R. G. Chowdhury and B. N. Mandal, Fluid Dynam Res., 38, 224–240 (2006).CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    D. Q. Lu and S. Q. Dai, Arch. Appl. Mech., 76, 49–63 (2006).CrossRefADSzbMATHGoogle Scholar
  27. 27.
    D. Q. Lu and S. Q. Dai, Intern. J. Eng. Sci., 46, 1183–1193 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    A. A. Savin and A. S. Savin, Fluid Dyn., 47, 139–146 (2012).CrossRefADSzbMATHGoogle Scholar
  29. 29.
    A. A. Il’ichev, A. A. Savin, and A. S. Savin, Dokl. Phys., 57, 202–205 (2012).CrossRefADSGoogle Scholar
  30. 30.
    A. A. Il’ichev, Unified Waves in Models of Hydrodynamics [in Russian], Fizmatlit, Moscow (2003).Google Scholar
  31. 31.
    K. Kirchgässner, J. Differ. Equ., 45, 113–127 (1982).CrossRefADSzbMATHGoogle Scholar
  32. 32.
    A. Mielke, Math. Meth. Appl. Sci., 10, 51–66 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    A. Vanderbauwhede and G. Iooss, “Center manifold theory in infinite dimensions,” in: Dynamics Reported (Expos. Dyn. Sys., Vol. 1, C. K. R. T. Jones, U. Kirchgraber, and H.-O. Walther, eds.), Springer, Berlin (1992), pp. 125–163.CrossRefGoogle Scholar
  34. 34.
    M. Hãrãgus-Courcelle and A. Il’ichev, Eur. J. Mech. B/Fluids, 17, 739–768 (1998).CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    G. Iooss and K. Kirchgässner, Proc. Roy. Soc. Edinburgh Ser. A, 122, 267–299 (1992).CrossRefzbMATHGoogle Scholar
  36. 36.
    G. Iooss and M. C. Pérouème, J. Differ. Equ., 102, 662–88 (1993).CrossRefADSzbMATHGoogle Scholar
  37. 37.
    A. Müller and R. Ettema, “Dynamic response of an icebreaker hull to ice breaking,” in: Proc. 7h IAHR Intl. Symp. on Ice (Hamburg, Germany, 27–30 August 1984), Vol. 2, Ice Engineering Department, Hamburg (1984), pp. 287–296.Google Scholar
  38. 38.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity [in Russian], Nauka, Moscow (1987); English transl. prev. ed., Pergamon, London (1959).Google Scholar
  39. 39.
    A. T. Il’ichev and A. Yu. Semenov, Theoret. Comput. Fluid Dynam., 3, 307–326 (1992).CrossRefADSzbMATHGoogle Scholar
  40. 40.
    Y. B. Fu and A. T. Il’ichev, IMA J. Appl. Math., 75, 257–268 (2010).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Institute of MathematicsRASMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations