Advertisement

Theoretical and Mathematical Physics

, Volume 182, Issue 2, pp 173–181 | Cite as

Blowing up solutions of the modified Novikov-Veselov equation and minimal surfaces

  • I. A. TaimanovEmail author
Article

Abstract

We propose a construction of blowup solutions of the modified Novikov-Veselov equation based on the Moutard transformation of the two-dimensional Dirac operators and on its geometric interpretation in terms of surface geometry. We consider an explicit example of such a solution constructed using the minimal Enneper surface.

Keywords

blowup solution modified Novikov-Veselov equation Moutard transformation two-dimensional Dirac operator Weierstrass representation of surfaces minimal surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Taimanov, Math. Notes, 97, 126–138 (2015); arXiv:1408.4464v1 [math.DG] (2014).CrossRefGoogle Scholar
  2. 2.
    D. Yu, Q. P. Liu, and S. Wang, J. Phys. A: Math. Gen., 35, 3779–3785 (2001).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    L. V. Bogdanov, Theor. Math. Phys., 70, 219–223 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. P. Veselov and S. P. Novikov, Sov. Math. Dokl., 30, 588–591 (1984).zbMATHGoogle Scholar
  5. 5.
    A. P. Veselov and S. P. Novikov, Sov. Math. Dokl., 30, 705–708 (1984).zbMATHGoogle Scholar
  6. 6.
    I. A. Taimanov and S. P. Tsarev, Theor. Math. Phys., 157, 1525–1541 (2008); arXiv:0801.3225v2 [math-ph] (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    I. A. Taimanov and S. P. Tsarev, Dokl. Math., 77, 467–468 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    I. A. Taimanov, “Modified Novikov-Veselov equation and differential geometry of surfaces,” in: Solitons, Geometry, and Topology: On the Crossroad (AMS Transl., Ser. 2, Vol. 179, Adv. Math. Sci/., Vol. 33, V. M. Buchstaber and S. P. Novikov, eds.), Amer. Math. Soc., Providence, R. I. (1997), pp. 133–151; arXiv:dg-ga/9511005v5 (1995).Google Scholar
  9. 9.
    B. G. Konopelchenko, Stud. Appl. Math., 96, 9–51 (1996).zbMATHMathSciNetGoogle Scholar
  10. 10.
    I. A. Taimanov, Russ. Math. Surveys, 61, 79–159 (2006).CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    T. Lamm and H. T. Nguyen, “Branched Willmore spheres,” J. Reine Angew. Math. (on-line first 2013).Google Scholar
  12. 12.
    I. A. Taimanov, Proc. Steklov Inst. Math., 225, 322–343 (1999).MathSciNetGoogle Scholar
  13. 13.
    C. Bohle and G. P. Peters, Trans. Amer. Math. Soc., 363, 5419–5463 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    I. A. Taimanov, “A fast decaying solution to the modified Novikov-Veselov equation with a one-point singularity,” arXiv:1408.4723v2 [math.AP] (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations