Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tensor gluons and proton structure

Abstract

We recently considered a possibility that inside a proton and, more generally, inside hadrons there could be additional partons, tensor gluons, which carry a part of the proton momentum. Tensor gluons have zero electric charge, like gluons, but have a larger spin, and we therefore call them tensor gluons. A nonzero density of tensor gluons can be generated by the emission of tensor gluons by gluons. Tensor gluons can further split into pairs of tensor gluons through different channels. To describe all these processes, we must know the general splitting probabilities for tensor gluons. These probabilities should satisfy very general symmetry relations, which we can resolve by introducing a splitting index. This approach allows finding the general form of the splitting functions, deriving the corresponding DGLAP evolution equations, and calculating the one-loop Callan-Symanzik beta function for tensor gluons of a given spin. Our results provide a nontrivial consistency check of the theory and of the Callan-Symanzik beta function calculations because the theory has a unique coupling constant and its high-energy behavior should be universal for all particles of the spectrum. We argue that the contribution of all spins to the beta function vanishes, leading to a conformal invariant theory.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Savvidy, Phys. Lett. B, 732, 150–155 (2014).

  2. 2.

    G. Savvidy, Phys. Lett. B, 625, 341–350 (2005); arXiv:hep-th/0509049v2 (2005).

  3. 3.

    G. Savvidy, Internat. J. Mod. Phys. A, 21, 4931–4957 (2006); arXiv:hep-th/0505033v2 (2005).

  4. 4.

    G. Savvidy, Internat. J. Mod. Phys. A, 21, 4959–4977 (2006); arXiv:hep-th/0510258v3 (2005).

  5. 5.

    G. Savvidy, Internat. J. Mod. Phys. A, 25, 5765–5785 (2010); arXiv:1006.3005v1 [hep-th] (2010).

  6. 6.

    G. Georgiou and G. Savvidy, Internat. J. Mod. Phys. A, 26, 2537–2555 (2011); arXiv:1007.3756v3 [hep-th] (2010).

  7. 7.

    I. Antoniadis and G. Savvidy, Modern Phys. Lett. A, 27, 1250103 (2012); arXiv:1107.4997v2 [hep-th] (2011).

  8. 8.

    G. Altarelli and G. Parisi, Nucl. Phys. B, 126, 298–318 (1977).

  9. 9.

    Yu. L. Dokshitzer, Sov. Phys. JETP, 46, 641–653 (1977).

  10. 10.

    V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15, 438–450 (1972).

  11. 11.

    V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys., 15, 675–684 (1972).

  12. 12.

    L. N. Lipatov, Sov. J. Nucl. Phys., 20, 94–102 (1975).

  13. 13.

    D. J. Gross and F. Wilczek, Phys. Rev. D, 8, 3633–3652 (1973).

  14. 14.

    D. J. Gross and F. Wilczek, Phys. Rev. D, 9, 980–993 (1974).

  15. 15.

    H. D. Politzer, Phys. Rev. Lett., 30, 1346–1349 (1973).

  16. 16.

    H. Georgi and S. L. Glashow, Phys. Rev. Lett., 32, 438–441 (1974).

  17. 17.

    H. Georgi, H. R. Quinn, and S. Weinberg, Phys. Rev. Lett., 33, 451–454 (1974).

  18. 18.

    L. J. Dixon, “Calculating scattering amplitudes efficiently,” arXiv:hep-ph/9601359v2 (1996).

  19. 19.

    S. J. Parke and T. R. Taylor, Phys. Rev. Lett., 56, 2459–2460 (1986).

  20. 20.

    E. Witten, Commun. Math. Phys., 252, 189–258 (2004); arXiv:hep-th/0312171v2 (2003).

  21. 21.

    R. Britto, F. Cachazo, B. Feng, and E. Witten, Phys. Rev. Lett., 94, 181602 (2005); arXiv:hep-th/0501052v2 (2005).

  22. 22.

    P. Benincasa and F. Cachazo, “Consistency conditions on the S-matrix of massless particles,” arXiv:0705.4305v2 [hep-th] (2007).

  23. 23.

    F. Cachazo, P. Svrcek, and E. Witten, JHEP, 0409, 006 (2004); arXiv:hep-th/0403047v2 (2004).

  24. 24.

    N. Arkani-Hamed, and J. Kaplan, JHEP, 0804, 076 (2008); arXiv:0801.2385v1 [hep-th] (2008).

  25. 25.

    F. A. Berends and W. T. Giele, Nucl. Phys. B, 313, 595–633 (1989).

  26. 26.

    M. L. Mangano and S. J. Parke, Nucl. Phys. B, 299, 673–692 (1988).

  27. 27.

    V. S. Fadin, E. A. Kuraev, and L. N. Lipatov, Phys. Lett. B, 60, 50–52 (1975).

  28. 28.

    É. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP, 45, 199–204 (1977).

  29. 29.

    I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys., 28, 822–829 (1978).

  30. 30.

    G. K. Savvidy, Phys. Lett. B, 71, 133–134 (1977).

  31. 31.

    S. G. Matinyan and G. K. Savvidy, Nucl. Phys. B, 134, 539–545 (1978).

  32. 32.

    I. A. Batalin, S. G. Matinyan, and G. K. Savvidy, Sov. J. Nucl. Phys., 26, 214–217 (1977).

  33. 33.

    D. Kay, Phys. Rev. D, 28, 1562–1565 (1983).

  34. 34.

    L. Brink and H. B. Nielsen, Phys. Lett. B, 43, 319–322 (1973).

Download references

Author information

Correspondence to G. Savvidy.

Additional information

Dedicated to Professor Andrei Slavnov on the occasion of his 75th birthday

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 182, No. 1, pp. 140–157, January, 2014. Original article submitted June 20, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savvidy, G. Tensor gluons and proton structure. Theor Math Phys 182, 114–129 (2015). https://doi.org/10.1007/s11232-015-0250-x

Download citation

Keywords

  • gauge theory
  • tensor gluon
  • renormalization group
  • Callan-Symanzik beta function
  • splitting function
  • DGLAP equation
  • asymptotic freedom