Advertisement

Theoretical and Mathematical Physics

, Volume 181, Issue 3, pp 1531–1540 | Cite as

The NSVZ β-function in supersymmetric theories with different regularizations and renormalization prescriptions

  • A. L. KataevEmail author
  • K. V. Stepanyantz
Article

Abstract

We briefly review the calculations of quantum corrections related to the exact Novikov-Shifman-Vainshtein-Zakharov (NSVZ) β-function in N=1 supersymmetric theories, paying special attention to the scheme dependence of the results. We explain how the NSVZ relation is obtained for the renormalization group functions defined in terms of the bare coupling constant if a theory is regularized by higher derivatives. We also describe how to construct a special renormalization prescription that gives the NSVZ relation for the renormalization group functions defined in terms of the renormalized coupling constant exactly in all orders for Abelian supersymmetric theories regularized by higher derivatives and discuss the scheme dependence of the NSVZ β-function (for the renormalization group functions defined in terms of the renormalized coupling constant) in the non-Abelian case. We show that in this case, the NSVZ β-function leads to a certain scheme-independent equality.

Keywords

supersymmetry renormalization β-function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B, 229, 381–393 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Soviet J. Nucl. Phys., 43, 294 (1986); Phys. Lett. B, 166, 329–333 (1986).Google Scholar
  3. 3.
    M. A. Shifman and A. I. Vainshtein, “Instantons versus supersymmetry: Fifteen years later,” in: ITEP Lectures on Particle Physics and Field Theory (World Sci. Lect. Notes Phys., Vol. 62, M. A. Shifman, ed.), World Scientific, Singapore (1999), pp. 485–647; arXiv:hep-th/9902018v2 (1999).CrossRefGoogle Scholar
  4. 4.
    D. R. T. Jones, Phys. Lett. B, 123, 45–46 (1983).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    A. I. Vainshtein and M. A. Shifman, Soviet Phys. JETP, 64, 428–440 (1986); M. A. Shifman and A. I. Vainshtein, Nucl. Phys. B, 277, 456–486 (1986).MathSciNetGoogle Scholar
  6. 6.
    N. Arkani-Hamed and H. Murayama, JHEP, 0006, 030 (2000); arXiv:hep-th/9707133v1 (1997).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, JETP Lett., 42, 224–227 (1985).ADSMathSciNetGoogle Scholar
  8. 8.
    M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys. Lett. B, 166, 334–336 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    E. Kraus, C. Rupp, and K. Sibold, Nucl. Phys. B, 661, 83–98 (2003).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    J. C. Taylor, Nucl. Phys. B, 33, 436–444 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Slavnov, Theor. Math. Phys., 10, 99–104 (1972).CrossRefMathSciNetGoogle Scholar
  12. 12.
    I. L. Buchbinder and K. V. Stepanyantz, Nucl. Phys. B, 883, 20–44 (2014).ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    J. Hisano and M. A. Shifman, Phys. Rev. D, 56, 5475–5482 (1997); arXiv:hep-ph/9705417v2 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    I. Jack and D. R. T. Jones, Phys. Lett. B, 415, 383–389 (1997); arXiv:hep-ph/9709364v2 (1997).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    L. V. Avdeev, D. I. Kazakov, and I. N. Kondrashuk, Nucl. Phys. B, 510, 289–312 (1998); arXiv:hep-ph/9709397v2 (1997).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    A. A. Slavnov, Nucl. Phys. B, 31, 301–305 (1971).ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    A. A. Slavnov, Theor. Math. Phys., 13, 1064–1066 (1972).CrossRefGoogle Scholar
  18. 18.
    M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Sov. J. Nucl. Phys., 43, 294 (1986).Google Scholar
  19. 19.
    A. A. Slavnov and L. L. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1988).zbMATHGoogle Scholar
  20. 20.
    V. K. Krivoshchekov, Theor. Math. Phys., 36, 745–752 (1978).CrossRefMathSciNetGoogle Scholar
  21. 21.
    P. C. West, Nucl. Phys. B, 268, 113–124 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    C. P. Martin and F. Ruiz Ruiz, Nucl. Phys. B, 436, 545–581 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30, 1343–1346 (1973).ADSCrossRefGoogle Scholar
  24. 24.
    H. D. Politzer, Phys. Rev. Lett., 30, 1346–1349 (1973).ADSCrossRefGoogle Scholar
  25. 25.
    M. Asorey and F. Falceto, Phys. Rev. D, 54, 5290–5301 (1996); arXiv:hep-th/9502025v2 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    T. D. Bakeyev and A. A. Slavnov, Modern Phys. Lett. A, 11, 1539–1554 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    P. I. Pronin and K. V. Stepanyantz, Phys. Lett. B, 414, 117–122 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    A. A. Soloshenko and K. V. Stepanyantz, Theor. Math. Phys., 140, 1264–1282 (2004).CrossRefzbMATHGoogle Scholar
  29. 29.
    A. B. Pimenov, E. S. Shevtsova, and K. V. Stepanyantz, Phys. Lett. B, 686, 293–297 (2010); arXiv:0912.5191v2 [hep-th] (2009).ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    A. V. Smilga and A. Vainshtein, Nucl. Phys. B, 704, 445–474 (2005); arXiv:hep-th/0405142v2 (2004).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    K. V. Stepanyantz, “Factorization of integrals defining the two-loop β-function for the general renormalizable N=1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives,” arXiv:1108.1491v1 [hep-th] (2011).Google Scholar
  32. 32.
    K. V. Stepanyantz, Nucl. Phys. B, 852, 71–107 (2011); arXiv:1102.3772v1 [hep-th] (2011).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    K. V. Stepanyantz, JHEP, 1408, 096 (2014); arXiv:1404.6717v2 [hep-th] (2014).ADSCrossRefGoogle Scholar
  34. 34.
    N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian], Nauka, Moscow (1984); English transl. prev. ed., Wiley, New York (1980).Google Scholar
  35. 35.
    G.’ t Hooft and M. Veltman, Nucl. Phys. B, 44, 189–213 (1972).ADSCrossRefGoogle Scholar
  36. 36.
    C. G. Bollini and J. J. Giambiagi, Nuovo Cimento B, 12, 20–26 (1972).Google Scholar
  37. 37.
    J. F. Ashmore, Lett. Nuovo Cimento, 4, 289–290 (1972).CrossRefGoogle Scholar
  38. 38.
    G. M. Cicuta and E. Montaldi, Lett. Nuovo Cimento Ser. 2, 4, 329–332 (1972).CrossRefGoogle Scholar
  39. 39.
    S. Ferrara and B. Zumino, Nucl. Phys. B, 79, 413–421 (1974).ADSCrossRefGoogle Scholar
  40. 40.
    D. R. T. Jones, Nucl. Phys. B, 87, 127–132 (1975).ADSCrossRefGoogle Scholar
  41. 41.
    W. Siegel, Phys. Lett. B, 84, 193–196 (1979).ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    A. A. Slavnov, Phys. Lett. B, 518, 195–200 (2001).ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    D. A. Slavnov, Theor. Math. Phys., 132, 1264–1276 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    A. A. Slavnov and K. V. Stepanyantz, Theor. Math. Phys., 135, 673–684 (2003).CrossRefzbMATHGoogle Scholar
  45. 45.
    A. A. Slavnov and K. V. Stepanyantz, Theor. Math. Phys., 139, 599–608 (2004).CrossRefzbMATHGoogle Scholar
  46. 46.
    W. Siegel, Phys. Lett. B, 94, 37–40 (1980).ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    L. V. Avdeev, G. A. Chochia, and A. A. Vladimirov, Phys. Lett. B, 105, 272–274 (1981).ADSCrossRefGoogle Scholar
  48. 48.
    L. V. Avdeev and A. A. Vladimirov, Nucl. Phys. B, 219, 262–276 (1983).ADSCrossRefGoogle Scholar
  49. 49.
    W. A. Bardeen, A. J. Buras, D. W. Duke, and T. Muta, Phys. Rev. D, 18, 3998–4017 (1978).ADSCrossRefGoogle Scholar
  50. 50.
    L. V. Avdeev and O. V. Tarasov, Phys. Lett. B, 112, 356–358 (1982).ADSCrossRefGoogle Scholar
  51. 51.
    V. N. Velizhanin, Phys. Lett. B, 696, 560–562 (2011).ADSCrossRefMathSciNetGoogle Scholar
  52. 52.
    L. V. Avdeev, Phys. Lett. B, 117, 317–320 (1982).ADSCrossRefGoogle Scholar
  53. 53.
    V. N. Velizhanin, Nucl. Phys. B, 818, 95–100 (2009); arXiv:0809.2509v2 [hep-th] (2008).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    I. Jack, D. R. T. Jones, and C. G. North, Phys. Lett. B, 386, 138–140 (1996).ADSCrossRefGoogle Scholar
  55. 55.
    R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, and M. Steinhauser, JHEP, 0612, 024 (2006).ADSCrossRefMathSciNetGoogle Scholar
  56. 56.
    I. Jack, D. R. T. Jones, P. Kant, and L. Mihaila, JHEP, 0709, 058 (2007).ADSCrossRefGoogle Scholar
  57. 57.
    L. Mihaila, Adv. High Energy Phys., 2013, 607807 (2013).CrossRefMathSciNetGoogle Scholar
  58. 58.
    T. A. Ryttov and R. Shrock, Phys. Rev. D, 85, 076009 (2012).ADSCrossRefGoogle Scholar
  59. 59.
    I. Jack, D. R. T. Jones, and C. G. North, Nucl. Phys. B, 486, 479–499 (1997); arXiv:hep-ph/9609325v1 (1996).ADSCrossRefGoogle Scholar
  60. 60.
    I. Jack, D. R. T. Jones, and A. Pickering, Phys. Lett. B, 435, 61–66 (1998).ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    J. Mas, C. Seijas, and M. Pérez-Victoria, JHEP, 0203, 049 (2002); arXiv:hep-th/0202082v2 (2002).ADSCrossRefGoogle Scholar
  62. 62.
    D. Z. Freedman, K. Johnson, and J. I. Latorre, Nucl. Phys. B, 371, 353–44 (1992).ADSCrossRefMathSciNetGoogle Scholar
  63. 63.
    F. del Águila, A. Culatti, R. Muñoz Tapia, and M. Pérez-Victoria, Nucl. Phys. B, 537, 561–585 (1999); arXiv:hep-ph/9806451v1 (1998).ADSCrossRefzbMATHGoogle Scholar
  64. 64.
    F. del Águila, A. Culatti, R. Muñoz-Tapia, and M. Pérez-Victoria, Nucl. Phys. B, 504, 532–550 (1997); arXiv:hep-ph/9702342v1 (1997).ADSCrossRefGoogle Scholar
  65. 65.
    M. A. Shifman and A. I. Vainshtein, Sov. J. Nucl. Phys., 44, 321 (1986).Google Scholar
  66. 66.
    G.’ t Hooft, Phys. Rev. D, 14, 3432–3450 (1976); Erratum, 18, 2199–2200 (1978).ADSCrossRefGoogle Scholar
  67. 67.
    T. R. Morris, D. A. Ross, and C. T. Sachrajda, Nucl. Phys. B, 264, 111–153 (1986).ADSCrossRefGoogle Scholar
  68. 68.
    T. R. Morris, D. A. Ross, and C. T. Sachrajda, Phys. Lett. B, 158, 223–226 (1985).ADSCrossRefGoogle Scholar
  69. 69.
    T. R. Morris, D. A. Ross, and C. T. Sachrajda, Phys. Lett. B, 172, 40–45 (1986).ADSCrossRefGoogle Scholar
  70. 70.
    A. L. Kataev and K. V. Stepanyantz, Nucl. Phys. B, 875, 459–482 (2013).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    A. L. Kataev and K. V. Stepanyantz, Phys. Lett. B, 730, 184–198 (2014); arXiv:1311.0589v2 [hep-th] (2013).ADSCrossRefGoogle Scholar
  72. 72.
    A. A. Slavnov, Theor. Math. Phys., 33, 977–981 (1977).CrossRefMathSciNetGoogle Scholar
  73. 73.
    S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Surguladze, Phys. Lett. B, 256, 81–85 (1991).ADSCrossRefGoogle Scholar
  74. 74.
    P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, and J. Rittinger, JHEP, 1207, 017 (2012).ADSCrossRefGoogle Scholar
  75. 75.
    A. L. Kataev and S. A. Larin, JETP Lett., 96, 61–65 (2012).ADSCrossRefGoogle Scholar
  76. 76.
    D. J. Broadhurst, R. Delbourgo, and D. Kreimer, Phys. Lett. B, 366, 421–428 (1996); arXiv:hep-ph/9509296v1 (1995).ADSCrossRefGoogle Scholar
  77. 77.
    K. G. Chetyrkin, S. G. Gorishny, A. L. Kataev, S. A. Larin, and F. V. Tkachov, Phys. Lett. B, 116, 455–458 (1981).ADSCrossRefGoogle Scholar
  78. 78.
    M. T. Grisaru, W. Siegel, and M. Rocek, Nucl. Phys. B, 159, 429–450 (1979).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute for Nuclear ResearchRASMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations