Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Darboux coordinates, Yang-Yang functional, and gauge theory

Abstract

The moduli space of flat SL 2 connections on a punctured Riemann surface Σ with fixed conjugacy classes of the monodromies around the punctures is endowed with a system of holomorphic Darboux coordinates in which the generating function of the variety of SL 2 -opers is identified with the universal part of the effective twisted superpotential of the corresponding four-dimensional N=2 supersymmetric theory subject to the two-dimensional Ω-deformation. This allows defining the Yang-Yang functionals for the quantum Hitchin system in terms of the classical geometry of the moduli space of local systems for the dual gauge group and relating it to the instanton counting of the four-dimensional gauge theories in the rank-one case.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    L. D. Faddeev, “The Bethe Ansatz,” Preprint SFB-288-70, Sonderforschungsbereich 288, Berlin (1993).

  2. 2.

    C. N. Yang and C. P. Yang, J. Math. Phys., 10, 1115–1122 (1969).

  3. 3.

    C. N. Yang and C. P. Yang, Phys. Rev., 150, 321–327 (1966).

  4. 4.

    E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, Theor. Math. Phys., 40, 688–706 (1979).

  5. 5.

    M. Jimbo, T. Miwa, and F. Smirnov, J. Phys. A, 42, 304018 (2009); arXiv:0811.0439v2 [math-ph] (2008).

  6. 6.

    G. W. Moore, N. Nekrasov, and S. Shatashvili, Commun. Math. Phys., 209, 97–121 (2000); arXiv:hep-th/9712241v2 (1998).

  7. 7.

    A. A. Gerasimov and S. L. Shatashvili, Commun. Math. Phys., 277, 323–367 (2008); arXiv:hep-th/0609024v3 (2006).

  8. 8.

    A. A. Gerasimov and S. L. Shatashvili, “Two-dimensional gauge theories and quantum integrable systems,” in: From Hodge Theory to Integrability and TQFT: tt*-Geometry (Proc. Symp. Pure Math., Vol. 78, R. Y. Donagi and K. Wendland, eds.), Amer. Math. Soc., Providence, R. I. (2008), pp. 239–262; arXiv:0711.1472v1 [hep-th] (2007).

  9. 9.

    E. Witten, J. Geom. Phys., 9, 303–368 (1992); arXiv:hep-th/9204083v1 (1992).

  10. 10.

    A. S. Gorsky and N. Nekrasov, Theor. Math. Phys., 100, 874–878 (1994).

  11. 11.

    A. Gorsky and N. Nekrasov, Nucl. Phys. B, 436, 582–608 (1995); arXiv:hep-th/9401017v4 (1994).

  12. 12.

    A. Gorsky and N. Nekrasov, “Elliptic Calogero-Moser system from two dimensional current algebra,” arXiv:hep-th/9401021v1 (1994).

  13. 13.

    A. Gorsky and N. Nekrasov, Nucl. Phys. B, 414, 213–238 (1994); arXiv:hep-th/9304047v1 (1993).

  14. 14.

    N. A. Nekrasov and S. L. Shatashvili, Nucl. Phys. B Proc. Suppl., 192–193, 91–112 (2009); arXiv:0901.4744v2 [hep-th] (2009).

  15. 15.

    N. Nekrasov and S. Shatashvili, AIP Conf. Proc., 1134, 154–169 (2009).

  16. 16.

    N. A. Nekrasov and S. L. Shatashvili, Prog. Theor. Phys. Suppl., 177, 105–119 (2009); arXiv:0901.4748v2 [hep-th] (2009).

  17. 17.

    N. A. Nekrasov and S. L. Shatashvili, “Quantization of integrable systems and four dimensional gauge theories,” in: XVIth International Congress on Mathematical Physics (Prague, Czech Republic, 3–8 August 2009, P. Exne, ed.), World Scientific, Singapore (2010), pp. 265–289; arXiv:0908.4052v1 [hep-th] (2009).

  18. 18.

    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466–474 (1995); arXiv:hep-th/9505035v2 (1995).

  19. 19.

    E. Martinec and N. Warner, Nucl. Phys. B, 459, 97–112 (1996); arXiv:hep-th/9509161v2 (1995).

  20. 20.

    R. Donagi and E. Witten, Nucl. Phys. B, 460, 299–334 (1996); arXiv:hep-th/9510101v2 (1995).

  21. 21.

    R. Y. Donagi, “Seiberg-Witten integrable systems,” arXiv:alg-geom/9705010v1 (1997).

  22. 22.

    N. A. Nekrasov, Adv. Theor. Math. Phys., 7, 831–864 (2004); arXiv:hep-th/0206161v1 (2002).

  23. 23.

    A. Losev, N. Nekrasov, and S. L. Shatashvili, “Testing Seiberg-Witten solution,” in: Strings, Branes and Dualities (Cargése France, 26 May–14 June 1997, L. Baulieu, P. Di Francesco, M. Douglas, V. Kazakov, M. Picco, and P. Windey, eds.), Kluwer, Dordrecht (1999), pp. 359–372; arXiv:hep-th/9801061v1 (1998).

  24. 24.

    A. Losev, N. Nekrasov, and S. L. Shatashvili, Nucl. Phys. B, 534, 549–611 (1998); arXiv:hep-th/9711108v2 (1997).

  25. 25.

    E. Witten, “Some comments on string dynamics,” in: Proc. Strings’ 95: Future Perspectives in String Theory (USC, Los Angeles, 13–18 March 1995, I. Bars, P. Bouwknegt, J. Minahan, D. Nemeshansky, K. Pilch, H. Saleur, and N. Warner, eds.), World Scientific, Singapore (1996), pp. 501–523; arXiv:hep-th/9507121v1 (1995).

  26. 26.

    A. Strominger, Phys. Lett. B, 383, 44–47 (1996); arXiv:hep-th/9512059v1 (1995).

  27. 27.

    E. Witten, Nucl. Phys. B, 500, 3–42 (1997); arXiv:hep-th/9703166v1 (1997).

  28. 28.

    D. Gaiotto, “N=2 dualities,” arXiv:0904.2715v1 [hep-th] (2009).

  29. 29.

    D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin systems, and the WKB approximation,” arXiv:0907.3987v2 [hep-th] (2009).

  30. 30.

    N. Seiberg and E. Witten, Nucl. Phys. B, 431, 484–550 (1994); arXiv:hep-th/9408099v1 (1994).

  31. 31.

    G. W. Moore, N. Nekrasov, and S. Shatashvili, Commun. Math. Phys., 209, 77–95 (2000); arXiv:hep-th/9803265v3 (1998).

  32. 32.

    E. Witten, Nucl. Phys. B, 443, 85–126 (1995); arXiv:hep-th/9503124v2 (1995).

  33. 33.

    M. Atiyah and R. Bott, Phil. Trans. Roy. Soc. London Ser. A, 308, 523–615 (1982).

  34. 34.

    E. Witten, Commun. Math. Phys., 121, 351–399 (1989).

  35. 35.

    A. M. Polyakov, Modern Phys. Lett. A, 2, 893–898 (1987).

  36. 36.

    A. Alekseev and S. L. Shatashvili, Nucl. Phys. B, 323, 719–733 (1989).

  37. 37.

    E. Verlinde and H. Verlinde, Nucl. Phys. B, 348, 457–489 (1991).

  38. 38.

    H. Verlinde, Nucl. Phys. B, 337, 652–680 (1990).

  39. 39.

    E. Witten, Nucl. Phys. B, 311, 46–78 (1988).

  40. 40.

    L. Chekhov and V. V. Fock, Theor. Math. Phys., 120, 1245–1259 (1999).

  41. 41.

    L. O. Chekhov and V. V. Fock, Czech. J. Phys., 50, 1201–1208 (2000).

  42. 42.

    E. Witten, “Three-dimensional gravity revisited,” arXiv:0706.3359v1 [hep-th] (2007).

  43. 43.

    N. Seiberg and E. Witten, “Gauge dynamics and compactification to three dimensions,” in: The Mathematical Beauty of Physics (Adv. Ser. Math. Phys., Vol. 24, J. M. Drouffe and J. B. Zuber, eds.), World Scientific, Singapore (1997), pp. 333–366; arXiv:hep-th/9607163v1 (1996).

  44. 44.

    N. J. Hitchin, Proc. London Math. Soc. (3), 55, 59–126 (1987).

  45. 45.

    A. Kapustin and E. Witten, Commun. Number Theory Phys., 1, 1–236 (2007); arXiv:hep-th/0604151v3 (2006).

  46. 46.

    N. Hitchin, Duke Math. J., 54, 91–114 (1987).

  47. 47.

    R. Donagi, “Spectral covers,” in: Current Topics in Complex Algebraic Geometry (MSRI Publ., Vol. 28, H. Clemens and J. Kollár, eds.), Cambridge Univ. Press, Cambridge (1995), pp. 65–86; arXiv:alg-geom/9505009v1 (1995).

  48. 48.

    N. Nekrasov and E. Witten, JHEP, 1009, 092 (2010); arXiv:1002.0888v2 [hep-th] (2010).

  49. 49.

    D. Gaiotto and E. Witten, Adv. Theoret. Math. Phys., 13, 721–896; arXiv:0807.3720v1 [hep-th] (2008).

  50. 50.

    D. Gaiotto and E. Witten, “Supersymmetric boundary conditions in N=4 super Yang-Mills theory,” arXiv:0804.2902v2 [hep-th] (2008).

  51. 51.

    A. Beilinson and V. Drinfeld, “Quantization of Hitchin’s integrable system and Hecke eigensheaves,” unpublished.

  52. 52.

    S. Gukov and E. Witten, “Branes and quantization,” arXiv:0809.0305v2 [hep-th] (2008).

  53. 53.

    L. F. Alday, D. Gaiotto, and Y. Tachikawa, Lett. Math. Phys., 91, 167–197 (2010); arXiv:0906.3219v2 [hep-th] (2009).

  54. 54.

    J. Teschner, Adv. Theor. Math. Phys., 15, 471–564 (2011); arXiv:1005.2846v2 [hep-th] (2010).

  55. 55.

    P. G. Zograf and L. A. Takhtadzhyan, Math. USSR-Sb., 60, 143–161 (1988).

  56. 56.

    V. Fock and A. Goncharov, Publ. Math. Inst. Hautes Études Sci., 103, 1–211 (2006).

  57. 57.

    N. Nekrasov, Commun. Math. Phys., 180, 587–603 (1996); arXiv:hep-th/9503157v4 (1995).

  58. 58.

    R. Donagi and E. Markman, “Spectral covers, algebraically completely integrable hamiltonian systems, and moduli of bundles,” in: Integrable Systems and Quantum Groups (Lect. Notes Math., Vol. 1620, M. Francaviglia and S. Greco, eds.) (1996), pp. 1–119; arXiv:alg-geom/9507017v2 (1995).

  59. 59.

    A. Kapustin and S. Sethi, Adv. Theor. Math. Phys., 2, 571–591 (1998); arXiv:hep-th/9804027v2 (1998).

  60. 60.

    E. Markman, Compositio Math., 93, 255–290 (1994).

  61. 61.

    A. Gorsky, N. Nekrasov, and V. Rubtsov, Commun. Math. Phys., 222, 299–318 (2001); arXiv:hep-th/9901089v3 (1999).

  62. 62.

    V. V. Fock and A. A. Rosly, “Poisson structure on moduli of flat connections on Riemann surfaces and r-matrix [in Russian],” Preprint ITEP-72-92, Inst. Theor. Exp. Phys., Moscow (1992); English transl., AMS Transl. Ser. 2, 191, 67–86 (1999); arXiv:math/9802054v2 (1998).

  63. 63.

    V. V. Fock and A. A. Roslyi, Theor. Math. Phys., 95, 526–534 (1993).

  64. 64.

    V. V. Fock and A. A. Rosly, Internat. J. Mod. Phys. B, 11, 3195–3206 (1997).

  65. 65.

    W. M. Goldman, Adv. Math., 54, 200–225 (1984).

  66. 66.

    W. M. Goldman, Invent. Math., 85, 263–302 (1986).

  67. 67.

    V. G. Turaev, Ann. Sci. École Norm. Sup. (4), 24, 635–704 (1991).

  68. 68.

    A. N. Tyurin, Quantization, Classical and Quantum Field Theory, and Theta Functions (CRM Monogr. Ser., Vol. 21), Amer. Math. Soc., Providence, R. I. (2003).

  69. 69.

    D. A. Derevnin and A. D. Mednykh, Russ. Math. Surveys, 60, 346–348 (2005).

  70. 70.

    L. Schläfli, Theorie der vielfachen Kontinuität (Gesammelte Mathematishe Abhandlungen, Vol. 1), Birkhäuser, Basel (1950).

  71. 71.

    N. I. Lobatschefskij, “Imaginäre Geometrie und ihre Anwendung auf einige Integrale,” in: Deutsche Übersetzung von H. Liebmann, Teubner, Leipzig (1904).

  72. 72.

    Yu. Cho and H. Kim, Discrete Comput. Geom., 22, 347–366 (1999).

  73. 73.

    J. Milnor, “The Schläfli differential equality,” in: Collected Papers, Vol. 1, Geometry, Publish or Perish, Houston, Tex. (1994), pp. 281–295.

  74. 74.

    M. Kapovich, J. J. Millson, and T. Treloar, “The symplectic geometry of polygons in hyperbolic 3-space,” arXiv:math/9907143v2 (1999).

  75. 75.

    A. A. Klyachko, “Spatial polygons and stable configurations of points in the projective line,” in: Algebraic Geometry and Its Applications (Asp. Math., Vol. 25), Vieweg, Braunschweig (1994), pp. 67–84.

  76. 76.

    P. Foth, J. Geom. Phys., 58, 825–832 (2007); arXiv:math/0703525v2 (2007).

  77. 77.

    A. Beilinson and V. Drinfeld, “Opers,” arXiv:math.AG/0501398v1 (2005).

  78. 78.

    A. Bilal, I. Kogan, and V. Fock, “On the origin of W-algebras,” Preprint CERN-TH.5965/90, CERN, Geneva (1990).

  79. 79.

    A. Gerasimov, A. Levin, and A. Marshakov, Nucl. Phys. B, 360, 537–558 (1991).

  80. 80.

    N. Nekrasov and V. Pestun, “Seiberg-Witten geometry of four dimensional N=2 quiver gauge theories,” arXiv:1211.2240v1 [hep-th] (2012).

  81. 81.

    E. Sklyanin, J. Sov. Math., 47, 2473–2488 (1989).

  82. 82.

    E. Frenkel, “Affine algebras, langlands duality, and Bethe ansatz,” in: XIth International Congress on Mathematical Physics (D. Iagolnitzer, ed.), International Press, Cambridge, Mass. (1995), pp. 606–642; arXiv:q-alg/9506003v3 (1995).

  83. 83.

    A. Gerasimov, A. Morozov, M. Olshanetsky, A. Marshakov, and S. L. Shatashvili, Internat. J. Mod. Phys. A, 5, 2495–2589 (1990).

  84. 84.

    V. Schechtman and A. Varchenko, “Integral representations of N-point conformal correlators in the WZW model,” Preprint MPI/89-51, Max-Planck Institut, Bonn (1989).

  85. 85.

    B. Feigin, E. Frenkel, and N. Reshetikhin, Commun. Math. Phys., 166, 27–62 (1994); arXiv:hep-th/9402022v2 (1994).

  86. 86.

    N. Reshetikhin and A. Varchenko, “Quasiclassical asymptotics of solutions to the KZ equations,” in: Geometry, Topology, and Physics for Raoul Bott (Conf. Proc. Lect. Notes Geom. Topol., Vol. 4, S.-T. Yau, ed.), International Press, Cambridge, Mass. (1995), pp. 293–322; arXiv:hep-th/9402126v3 (1994).

  87. 87.

    G. Felder and A. Varchenko, Compositio Math., 107, 143–175 (1997); arXiv:hep-th/9511120v1 (1995).

  88. 88.

    A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B, 477, No. 2, 577–605 (1996); arXiv:hep-th/9506136v2 (1995).

  89. 89.

    E. Aldrovandi and L. A. Takhtajan, Commun. Math. Phys., 227, 303–348 (2002); arXiv:math/0006147v1 (2000).

  90. 90.

    L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, JHEP, 1001, 113 (2010); arXiv:0909.0945v3 [hep-th] (2009).

  91. 91.

    D. Gaiotto, “Asymptotically free N=2 theories and irregular conformal blocks,” arXiv:0908.0307v1 [hep-th] (2009).

  92. 92.

    E. Witten, Anal. Appl. (Singapore), 6, 429–501 (2008); arXiv:0710.0631v1 [hep-th] (2007).

  93. 93.

    B. Feigin, E. Frenkel, and V. Toledano-Laredo, Adv. Math., 223, 873–948 (2010); arXiv:math/0612798v3 (2006).

Download references

Author information

Correspondence to N. A. Nekrasov.

Additional information

Dedicated to L. D. Faddeev on the occasion of his 80th birthday

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, N.A., Rosly, A.A. & Shatashvili, S.L. Darboux coordinates, Yang-Yang functional, and gauge theory. Theor Math Phys 181, 1206–1234 (2014). https://doi.org/10.1007/s11232-014-0209-3

Download citation

Keywords

  • gauge theory
  • supersymmetry
  • Hitchin integrable system
  • Darboux variable
  • quantization