Advertisement

Theoretical and Mathematical Physics

, Volume 181, Issue 1, pp 1132–1144 | Cite as

Combinatorics of a strongly coupled boson system

  • N. M. Bogoliubov
Article
  • 59 Downloads

Abstract

We introduce a quantum phase model as a limit for very strong interactions of a strongly correlated q-boson hopping model. We describe the general solution of the phase model and express scalar products of state vectors in determinant form. The representation of state vectors in terms of Schur functions allows obtaining a combinatorial interpretation of the scalar products in terms of nests of self-avoiding lattice paths. We show that under a special parameterization, the scalar products are equal to the generating functions of plane partitions confined in a finite box. We consider the two-dimensional vertex model related to the phase model and express the vertex model partition function with special boundary conditions in terms of the scalar product of the phase model state vectors.

Keywords

strongly interacting boson scalar product self-avoiding lattice path boxed plane partition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Faddeev, Sov. Sci. Rev. Math. C, 1, 107–155 (1980); “Quantum completely integrable models in field theory,” in: 40 Years in Mathematical Physics (20th Cent. Math., Vol. 2), World Scientific, Singapore (1995), pp. 187–235.zbMATHGoogle Scholar
  2. 2.
    L. A. Takhtadzhyan and L. D. Faddeev, Russ. Math. Surveys, 34, No. 5, 11–68 (1979).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method recent developments,” in: Integrable Quantum Field Theories (Lect. Notes Phys., Vol. 151, J. Hietarinta and C. Montonen, eds.), Springer, Berlin (1982), p. 61–119.CrossRefGoogle Scholar
  4. 4.
    V. G. Drinfeld, “Quantum groups,” in: Proc. Intl. Congr. Math. (Berkeley, Calif., USA, 3–11 August 1986, M. Gleason, ed.), Amer. Math. Soc., Providence, R. I. (1987), p. 798–820.Google Scholar
  5. 5.
    N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Leningrad Math. J., 1, 193–225 (1990).zbMATHMathSciNetGoogle Scholar
  6. 6.
    P. P. Kulish and N. Yu. Reshetikhin, J. Soviet Math., 23, 2435–2441 (1983).CrossRefGoogle Scholar
  7. 7.
    N. V. Tsilevich, Funct. Anal. Appl., 40, 207–217 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    N. M. Bogoliubov, J. Phys. A, 38, 9415–9430 (2005).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    N. M. Bogolyubov, Theor. Math. Phys., 150, 165–174 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. M. Povolotsky, Phys. Rev. E, 69, 061109 (2004).ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. M. Povolotsky, J. Phys. A, 46, 465205 (2013).ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Borodin, I. Corwin, L. Petrov, and T. Sasamoto, “Spectral theory for the q-boson particle system,” arXiv:1308.3475v2 [math-ph] (2013).Google Scholar
  13. 13.
    P. Sułkowski, JHEP, 0810, 104 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    S. Okuda and Y. Yoshida, JHEP, 1211, 146 (2012).ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    S. Okuda and Y. Yoshida, “G/G gauged WZW-matter model, Bethe Ansatz for q-boson model, and commutative Frobenius algebra,” arXiv:1308.4608v2 [hep-th] (2013).Google Scholar
  16. 16.
    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Modern Phys., 80, 1083–1159 (2008).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    P. P. Kulish and E. V. Damaskinsky, J. Phys. A, 23, L415–L419 (1990).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    N. M. Bogoliubov, R. K. Bullough, and G. D. Pang, Phys. Rev. B, 47, 11495–11498 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    N. M. Bogoliubov, R. K. Bullough, and J. Timonen, Phys. Rev. Lett., 72, 3933–3936 (1994).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    N. M. Bogoliubov, A. G. Izergin, and N. A. Kitanine, Nucl. Phys. B, 516, 501–528 (1998).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    N. M. Bogoliubov and J. Timonen, Phil. Trans. Roy. Soc. London Ser. A, 369, 1319–1333 (2011).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    N. M. Bogoliubov, J. Math. Sci. (N. Y.), 158, 771–786 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).CrossRefzbMATHGoogle Scholar
  24. 24.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1995).zbMATHGoogle Scholar
  25. 25.
    R. P. Stanley, Enumerative Combinatorics (Cambridge Stud. Adv. Math., Vol. 62), Vol. 2, Cambridge Univ. Press, Cambridge (1999).CrossRefGoogle Scholar
  26. 26.
    P. Carruthers and M. M. Nieto, Rev. Modern Phys., 40, 411–440 (1968).ADSCrossRefGoogle Scholar
  27. 27.
    G. Kuperberg, Internat. Math. Res. Notices, 1996, 139–150 (1996).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    N. M. Bogoliubov and C. Malyshev, Nucl. Phys. B, 879, 268–291 (2014).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    A. J. Guttmann, A. L. Owczarek, and X. G. Viennot, J. Phys. A, 31, 8123–8135 (1998).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    D. M. Bressoud, Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.St. Petersburg Department of the Steklov Institute of MathematicsRASSt. PetersburgRussia

Personalised recommendations