Advertisement

Theoretical and Mathematical Physics

, Volume 180, Issue 2, pp 967–982 | Cite as

Asymptotic solutions of Navier-Stokes equations and topological invariants of vector fields and Liouville foliations

  • V. P. MaslovEmail author
  • A. I. Shafarevich
Article

Abstract

We construct asymptotic solutions of the Navier-Stokes equations. Such solutions describe periodic systems of localized vortices and are related to topological invariants of divergence-free vector fields on two-dimensional cylinders or tori and to the Fomenko invariants of Liouville foliations. The equations describing the evolution of a vortex system are given on a graph that is a set of trajectories of the divergence-free field or a set of Liouville tori.

Keywords

hydrodynamic equation localized vortex topology of Liouville foliations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge (1967).zbMATHGoogle Scholar
  2. 2.
    V. P. Maslov, Russ. Math. Surveys, 41, No. 6, 23–42 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    V. P. Maslov, “Kolmogorov law and Kolmogorov and Taylor scales in anisotropic turbulence [in Russian],” Preprint IPM RAS No. 506, Inst. Problems in Mechanics, Russ. Acad. Sci., Moscow (1991).Google Scholar
  4. 4.
    V. P. Maslov and A. I. Shafarevich, Russ. J. Math. Phys., 13, 414–424 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    V. P. Maslov and A. I. Shafarevich, Math. Notes, 90, 686–700 (2011).CrossRefzbMATHGoogle Scholar
  6. 6.
    V. P. Maslov and A. I. Shafarevich, Math. Notes, 91, 207–216 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    A. I. Shafarevich, Russ. J. Math. Phys., 7, 426–463 (2000).zbMATHMathSciNetGoogle Scholar
  8. 8.
    A. I. Shafarevich, “Asymptotical and topological constructions in hydrodynamics,” in: Operator Methods in Ordinary and Partial Differential Equations (Operator Theory: Adv. Appl., Vol. 132, S. Albeverio, N. Elander, W. N. Everitt, and P. Kurasov, eds.), Birkhäuser, Basel (2002), pp. 347–359.CrossRefGoogle Scholar
  9. 9.
    V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov, Application of Group Theory Methods in Hydrodynamics [in Russian], Nauka, Novosibirsk (1994).Google Scholar
  10. 10.
    S. A. Vakulenko and I. A. Molotkov, Zap. Nauchn. Sem. LOMI, 148, 52–60 (1985).zbMATHMathSciNetGoogle Scholar
  11. 11.
    S. A. Vakulenko and I. A. Molotkov, Dokl. AN SSSR, 262, No. 3, 587–591 (1982).MathSciNetGoogle Scholar
  12. 12.
    S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, and A. I. Shafarevich, Dokl. Math., 52, 456–458 (1995).zbMATHGoogle Scholar
  13. 13.
    M. I. Vishik and A. I. Komech, Sov. Math. Dokl., 24, 571–576 (1981).zbMATHGoogle Scholar
  14. 14.
    M. A. Gol’dshtik, V. N. Shtern, and N. I. Javorskii, Viscous Flows with Paradoxical Properties [in Russian], Nauka, Novosibirsk (1989).zbMATHGoogle Scholar
  15. 15.
    V. I. Zhuk and O. S. Ryzhov, Sov. Phys. Dokl., 24, 689–691 (1979).ADSzbMATHGoogle Scholar
  16. 16.
    Yu. K. Krasnov, “The evolution of ‘whirlwinds’ [in Russian],” in: Nonlinear Waves. Structures and Bifurcations, Nauka, Moscow (1987), pp. 174–189.Google Scholar
  17. 17.
    A. G. Kulikovskii, Proc. Steklov Inst. Math., 182, 285–317 (1990).Google Scholar
  18. 18.
    V. P. Maslov and G. A. Omel’yanov, Theor. Math. Phys., 92, 879–895 (1992).CrossRefMathSciNetGoogle Scholar
  19. 19.
    V. P. Maslov and G. A. Omel’yanov, Russ. Math. Surveys, 36, No. 3, 73–149 (1981).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    V. P. Maslov and A. I. Shafarevich, Dokl. Math., 42, 552–556 (1997).zbMATHMathSciNetGoogle Scholar
  21. 21.
    I. A. Molotkov and S. A. Vakulenko, Concentrated Nonlinear Waves [in Russian], Leningrad Univ. Press, Leningrad (1988).Google Scholar
  22. 22.
    O. A. Oleinik and V. N. Samokhin, Mathematical Methods in Boundary-Layer Theory [in Russian], Moscow (1997).Google Scholar
  23. 23.
    O. G. Tietjens, Fundamentals of Hydro- and Aeromechanics: Based on Lectures of L. Prandtl, Dover, New York (1957).Google Scholar
  24. 24.
    O. S. Ryzhov and E. D. Terent’ev, PMM, 41, No. 6, 1007–1023 (1977).MathSciNetGoogle Scholar
  25. 25.
    R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (Stud. Math. Its Appl., Vol. 2), North-Holland, Amsterdam (1979).Google Scholar
  26. 26.
    G. N. Abramovich, ed., Theory of Turbulent Jets [in Russian], Nauka, Moscow (1984).zbMATHGoogle Scholar
  27. 27.
    A. I. Shafarevich, Math. Notes, 67, 792–801 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    L. E. Fraenkel, J. Fluid Mech., 51, 119–135 (1972).ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    A. Friedman and B. Turkington, Trans. Amer. Math. Soc., 268, 1–37 (1981).CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    A. Haefliger and G. Reeb, Enseignement Math. (2), 3, 107–125 (1957).zbMATHMathSciNetGoogle Scholar
  31. 31.
    V. P. Maslov and G. A. Omel’yanov, Russ. J. Math. Phys., 2, 463–485 (1994).zbMATHMathSciNetGoogle Scholar
  32. 32.
    H. K. Moffatt, “On the existence of Euler flows that are topologically accessible from a given flow,” in: Revista Brasileira de Ciências Mecânicas IX, Associaça̋o Brasileira de Engenharia e Ciências Mecânicas, Rio de Janeiro (1987), pp. 93–101.Google Scholar
  33. 33.
    H. K. Moffatt, Fluid Dyn. Res., 3, 22–30 (1988).ADSCrossRefGoogle Scholar
  34. 34.
    H. K. Moffatt, S. Kida, and K. Ohkitani, J. Fluid Mech., 259, 241–264 (1994).ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    J. Norbury, J. Fluid Mech., 57, 417–431 (1973).ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    L. Prandtl, “Über Flüssigkeitsbewegungen bei sehr kleiner Reibung,” in: Verhandlungen des dritten internationalen Mathematischen Kongresses (Heidelberg, 1904), Teubner, Leipzig (1905), pp. 484–494.Google Scholar
  37. 37.
    I. M. Krichever, Funct. Anal. Appl., 22, 200–213 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    G. E. Kuzmak, J. Appl. Math. Mech., 23, 730–744 (1959).CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    D. MacLaughlin and A. Scott, “Multisoliton perturbation theory,” in: Solitons in Action, Acad. Press, New York (1978).Google Scholar
  40. 40.
    G. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).zbMATHGoogle Scholar
  41. 41.
    H. Flashka, M. G. Forest, and D. W. McLaughlin, Comm. Pure Appl. Math., 33, 739–784 (1980).ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    S. Yu. Dobrokhotov and A. I. Shafarevich, Fluid Dynam., 31, 511–514 (1996).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    S. Yu. Dobrokhotov and A. I. Shafarevich, Russ. J. Math. Phys., 2, 133–135 (1994).zbMATHMathSciNetGoogle Scholar
  44. 44.
    A. I. Shafarevich, Differ. Equations, 34, 1124–1134 (1998).zbMATHMathSciNetGoogle Scholar
  45. 45.
    A. I. Shafarevich, Dokl. Ross. Akad. Nauk, 358, 752–755 (1998).MathSciNetGoogle Scholar
  46. 46.
    A. I. Shafarevich, Russ. Math. Surveys, 53, 783–860 (1998).CrossRefGoogle Scholar
  47. 47.
    D. W. McLaughlin, G. C. Papanicolaou, and O. R. Pironneau, SIAM J. Appl. Math., 45, 780–797 (1985).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    H. K. Moffatt, J. Fluid Mech., 159, 359–378 (1985).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    A. I. Shnirelman, Russ. J. Math. Phys., 1, 105–114 (1993).zbMATHMathSciNetGoogle Scholar
  50. 50.
    S. Yu. Dobrokhotov and V. P. Maslov, J. Soviet Math., 16, 1433–1487 (1981).CrossRefzbMATHGoogle Scholar
  51. 51.
    V. I. Arnold and B. Khesin, Topological Methods in Hydrodynamics (Appl. Math. Sci., Vol. 125), Springer, New York (1998).zbMATHGoogle Scholar
  52. 52.
    V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  53. 53.
    V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics [in Russian],” in: Dynamic Systems — 3 (Sovrem. Probl. Mat. Fund. Naprav., Vol. 3), VINITI, Moscow (1985), pp. 5–290.Google Scholar
  54. 54.
    O. M. Penkin and Yu. V. Pokornyi, Math. Notes, 59, 562–565 (1996).CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1984).Google Scholar
  56. 56.
    L. I. Sedov, Continuum Mechanics [in Russian], Vols. 1 and 2, Nauka, Moscow (1994).zbMATHGoogle Scholar
  57. 57.
    A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification [in Russian], Vols. 1 and 2, Udmurtskii Univ. Press, Izhevsk (1999).Google Scholar
  58. 58.
    V. P. Maslov, Asymptotic Methods for Solving Pseudodifferential Equations [in Russian], Nauka, Moscow (1987).Google Scholar
  59. 59.
    V. P. Maslov, Math. Notes, 78, 870–877 (2005).MathSciNetGoogle Scholar
  60. 60.
    V. P. Maslov, Math. Notes, 80, 214–223 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    V. P. Maslov and A. I. Shafarevich, J. Appl. Math. Mech., 62, 389–396 (1998).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Higher School of EconomicsMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations