Theoretical and Mathematical Physics

, Volume 180, Issue 2, pp 958–966 | Cite as

Cluster networks and Bruhat-Tits buildings

  • S. V. Kozyrev


We consider a clustering procedure in the case where a family of metrics is used instead of a fixed metric. In this case, a classification network (a directed acyclic graph with nondirected cycles) is obtained instead of a classification tree. We discuss the relation to Bruhat-Tits buildings and introduce the notion of the dimension of a general cluster network.


clustering cluster network Bruhat-Tits building 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio and S. V. Kozyrev, p-Adic Numbers Ultrametric Anal. Appl., 4, 167–178 (2012); arXiv:1204.5952v1 [cs.DS] (2012).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    S. V. Kozyrev, Theor. Math. Phys., 164, 1163–1168 (2010).CrossRefMATHGoogle Scholar
  3. 3.
    J. Benois-Pineau and A. Khrennikov, Computer J., 53, 417–431 (2010).CrossRefGoogle Scholar
  4. 4.
    J. Benois-Pineau, A. Yu. Khrennikov, and N. Kotovich, Dokl. Math., 64, 450–455 (2001).Google Scholar
  5. 5.
    F. Murtagh, Multidimensional Clustering Algorithms, Physica-Verlag, Heidelberg (1985).MATHGoogle Scholar
  6. 6.
    P. B. Garrett, Buildings and Classical Groups, Chapman and Hall, London (1997).CrossRefMATHGoogle Scholar
  7. 7.
    A. Weil, Basic Number Theory, Springer, New York (1967).CrossRefMATHGoogle Scholar
  8. 8.
    V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York (1995).CrossRefMATHGoogle Scholar
  9. 9.
    E. V. Koonin, The Logic of Chance: The Nature and Origin of Biological Evolution, FT Press Science, Upper Saddle River, N. J. (2011).Google Scholar
  10. 10.
    D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks, Cambridge Univ. Press, Cambridge (2010).CrossRefGoogle Scholar
  11. 11.
    A. Dress, K. T. Huber, J. Koolen, V. Moulton, and A. Spillner, Basic Phylogenetic Combinatorics, Cambridge Univ. Press, Cambridge (2012).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations