Advertisement

Theoretical and Mathematical Physics

, Volume 180, Issue 2, pp 942–957 | Cite as

Algebraic aspects of gauge theories

  • V. V. Zharinov
Article

Abstract

Gauge theories are primary tools in modern elementary particle physics. The generally recognized mathematical foundations of these theories are in differential geometry, namely, in the theory of connections in a principal fiber bundle. We propose another approach to the mathematical description of gauge theories based on a combination of algebraic and geometric methods.

Keywords

derivation principal fiber bundle covariant derivative gauge Yang-Mills field Yang-Mills action gauge invariance moduli space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. N. Yang and R. L. Mills, Phys. Rev., 96, 191–195 (1954).ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Ehresmann, “Les connexions infinitèsimales dans un espace fibré différentable,” in: Colloque de Topologie (Bruxelles, 5–8 June 1950), Paris, Masson (1951), pp. 29–55.Google Scholar
  3. 3.
    V. F. Atiyah, “Geometrical aspects of gauge theories,” in: Proc. Intl. Congress of Mathematicians (Helsinki, 15–23 August 1978, O. Letho, ed.), University of Helsinki, Helsinki (1980), pp. 881–885.Google Scholar
  4. 4.
    D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley, Reading, Mass. (1981).MATHGoogle Scholar
  5. 5.
    K. B. Marathe and G. Martucci, The Mathematical Foundations of Gauge Theories (Stud. Math. Phys., Vol. 5), North-Holland, Amsterdam (1992).MATHGoogle Scholar
  6. 6.
    C. J. Isham, Modern Differential Geometry for Physicists, World Scientific, Singapore (1999).CrossRefMATHGoogle Scholar
  7. 7.
    A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1978); English transl.: L. D. Faddeev and A. A. Slavnov Gauge Fields: Introduction to Quantum Theory, Benjamin, Reading, Mass. (1980).Google Scholar
  8. 8.
    S. MacLane, Homology (Grundlehren Math. Wiss., Vol. 114), Springer-Verlag, Berlin (1963).CrossRefMATHGoogle Scholar
  9. 9.
    V. V. Zharinov, Theor. Math. Phys., 174, 220–235 (2013).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations