Advertisement

Theoretical and Mathematical Physics

, Volume 180, Issue 2, pp 881–893 | Cite as

Holography and nonlocal operators for the BTZ black hole with nonzero angular momentum

  • D. S. AgeevEmail author
  • I. Ya. Arefeva
Article

Abstract

We use the AdS/CFT correspondence to study a singlet potential of interaction of the quark-antiquark pair for the BTZ black hole with a nonzero angular momentum. Using explicit forms of string configurations contributing to the potential, we demonstrate that the potential manifests different dependences on the angular momentum in the cases of Euclidean and Lorentzian signatures of the BTZ black hole.

Keywords

anti-de Sitter space black hole AdS/CFT correspondence holography quark-gluon plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, “Gauge/string duality, hot QCD, and heavy ion collisions,” arXiv:1101.0618v2 [hep-th] (2011).Google Scholar
  2. 2.
    I. Aref’eva, PoS (ICMP 2012), 025 (2012).Google Scholar
  3. 3.
    O. DeWolfe, S. S. Gubser, C. Rosen, and D. Teaney, “Heavy ions and string theory,” arXiv:1304.7794v2 [hep-th] (2013).Google Scholar
  4. 4.
    A. Nata Atmaja and K. Schalm, JHEP, 1104, 070 (2011); arXiv:1012.3800v2 [hep-th] (2010).CrossRefGoogle Scholar
  5. 5.
    B. McInnes, Nucl. Phys. B, 864, 722–744 (2012); arXiv:1206.0120v2 [hep-th] (2012).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    I. Aref’eva, A. Bagrov, and A. S. Koshelev, JHEP, 1307, 170 (2013); arXiv:1305.3267v2 [hep-th] (2013).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. W. Hawking, C. J. Hunter, and M. Taylor, Phys. Rev. D, 59, 064005 (1999); arXiv:hep-th/9811056v2 (1998).ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. W. Hawking and H. S. Reall, Phys. Rev. D, 61, 024014 (2000); arXiv:hep-th/9908109v2 (1999).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Giataganas, PoS (Corfu 2012), 122 (2012); arXiv:1306.1404v3 [hep-th] (2013).Google Scholar
  10. 10.
    H. Liu, K. Rajagopal, and U. A. Wiedemann, JHEP, 0703, 066 (2007); arXiv:hep-th/0612168v2 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    J. M. Maldacena, Phys. Rev. Lett., 80, 4859–4862 (1998); arXiv:hep-th/9803002v3 (1998).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    F. Jugeau, PoS (ICMP 2012), 015 (2012); arXiv:1211.0502v1 [hep-ph] (2012).Google Scholar
  13. 13.
    A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S. Yankielowicz, Phys. Lett. B, 434, 36–40 (1998); arXiv:hepth/9803137v2 (1998).ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    S.-J. Rey, S. Theisen, and J.-T. Yee, Nucl. Phys. B, 527, 171–186 (1998); arXiv:hep-th/9803135v2 (1998).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Appl. Math. Series, Vol. 55), Natl. Bur. Stds., Washington, D.C. (1972).zbMATHGoogle Scholar
  16. 16.
    I. Ya. Aref’eva and I. V. Volovich, “On large N conformal theories, field theories in anti-De Sitter space, and singletons,” arXiv:hep-th/9803028v3 (1998); Phys. Lett. B, 433, 49–55 (1998); arXiv:hep-th/9804182v2 (1998).Google Scholar
  17. 17.
    J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, Phys. Rev. D, 78, 115007 (2008); arXiv:0807.4747v3 [hep-th] (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations